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ABSTRACT

Lung cancer is a disease with significant prevalence in several countries around the world.
Its difficult treatment and rapid progression make the mortality rates among people affected
by this illness to be very high.

Aiming to offer a computational alternative for helping in detection of nodules, serving
as a second opinion to the specialists, this work proposes a totally automatic methodology
based on successive detection refining stages.

The automated lung nodules detection scheme consists of six stages: thorax extraction,
lung extraction, lung reconstruction, structures extraction, tubular structures elimination,
and false positive reduction. In the thorax extraction stage all the artifacts external to the
patient’s body are discarded. Lung extraction stage is responsible for the identification of
the lung parenchyma. The objective of the lung reconstruction stage is to prevent incorrect
elimination of portions belonging to the parenchyma. Structures extraction stage comprises
the selection of dense structures from inside the lung parenchyma. The next stage, tubu-
lar structures elimination eliminates a great part of the pulmonary trees. Finally, the false
positive stage selects only structures with great probability to be nodule. Each of the several
stages has very specific objectives in detection of particular cases of lung nodules, ensuring
good matching rates even in difficult detection situations.

We use 33 exams with diversified diagnosis and slices numbers for validating the method-
ology. We obtained a false positive per exam rate of 0.42 and false negative rate of 0.15. The
total classification sensitivity obtained, measured out of the nodule candidates, was 84.84%.
The specificity achieved was 96.15% and the total accuracy of the method was 95.21%.

© 2009 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

2008 indicate that lung cancer, throughout world, is the one
that attacks the greatest number of people. In Brazil, a total
of 27,270 new cases of the disease is estimated for this year,

Lung cancer has been attracting the attention of medicaland  being smoking the main risk factor. The last global estimative,

scientific communities in the latest years because of its high on the other hand, indicated the occurrence of 1,200,000 new
prevalence allied with the difficult treatment. Statistics from cases of the disease only in the year 2000 [1].
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More globally, the mortality rate related to lung cancer has
been decreasing, but it is still high. Researches indicate that
the 5-year survival of diagnosed patients varies between 13%
and 21% in developed countries, but in emergent countries,
like Brazil, it lies between 7% and 10% [1].

Identifying the disease still on its initial stages, can ele-
vate the patient’s 5-year survival chance up to 70% [2]. This
way, it is known that precocious diagnosis is the best way to
ensure the success of the treatment. Thus, there is a growing
demand for methods thatimprove the existing mechanisms to
aid it.

One of the main imaging modality for this kind of dis-
ease diagnostic is the computerized tomography (CT) of the
patient’s chest. In moderns CT scans, CT analysis demands
great effort from the specialist, due to the great number of
slices and fatigue becomes a recognized limitation to the early
diagnosis.

One important aspect of the problem consists in the fact
that the specialist diagnosis is mainly based on morphologic
characteristics of the structure under analysis which can be
verified only in 3D space. But the analysis of the result of a CT
is performed, traditionally, through bi-dimensional images,
representing the slices of the patient’s body.

This tradeoff between what the specialist needs to observe
and what is shown to him ends up requiring a mental recon-
struction of the tri-dimensional aspects of the tissues under
analysis, task which, besides complex and slow, can fall into
significant mistakes.

This scenario demonstrates that there is a great demand
for computational systems which can help with the tasks of
detection and diagnosis of lung nodules, reason for which the
number of published papers related to this matter increases
every year [3].

Nevertheless, several challenges are involved in automatic
segmentation of lung nodules. The firstis related to the quality
of the images. The use of images from old tomographs, with
noises and low resolution, is very common. Besides, there is
the problem of lack of standardization, as much in the file for-
mats as in setup of parameters of the tomograph, generating
exams with differing characteristics.

The most difficult problem, although, is the transfer of
knowledge involved in the identification of a lung nodule to an
automatic process. This involves, among other aspects, deter-
mining the numerically measurable characteristics to describe
portions of an image, distinguishing those that are nodules
from those that are not.

The task of distinguishing nodules from normal structures
can also be especially difficult because, under the computa-
tional viewpoint, the nodules can be very similar to other
elements of the lung parenchyma. Examples of this are the
blood vessels, in which rates of absorption of X-rays (which
origin the intensity of pixels in the exam) are comparable to
those of the nodules.

Regarding morphology, the nodules can have the most
diverse aspects: round, flat or spiculate. About the location,
they occur all inside the lungs, inclusively on the peripheral
area. This way, being aggregated to other normal structures
makes difficult not only its detection, but the correct delim-
itation of its bounds, since it ends up being confused with
elements around it.

Targeting the challenges above described, this work pro-
poses an automatic methodology for the detection of lung
nodules. The proposed methodology aims to contribute to the
researches of mechanisms for diagnosis aiding, through the
search for matching rates which are greater and more consis-
tent than those presently obtained. Among the characteristics
responsible for the high performance of this methodology,
we have the progressive refining of nodule detection, which
means that specific problems are solved in every stage, in
order to achieve the objective of detection. Another impor-
tant aspect of the proposed methodology is that it is complete.
This is related to the fact that even in the most difficult cases,
which are when the nodules are linked to the chest wall, aggre-
gated to the bronchi or blood trees, or are the single ones, we
achieved correctresults. This result came from the implemen-
tation of specific strategies to detect and solve these specifics
problems.

In addition, this work aims to give, besides correct results
from the medical viewpoint, coherence in the obtained detec-
tions. As it concerns an automatic process with deterministic
behavior, interference of the operator experience and preci-
sion on detection is avoided. This way, as the process does
not depend on external parameters or user participation, its
results must be consistent for the same image or image cate-
gory. Thatis, detection results are expected to be reproducible.

Reproducibility is an important characteristic because it
gives assurance to the results of segmentation, as it decreases
subjectivism. If the specialist obtains different results each
time he looks for automatic detection, he will lose confidence
in the method because he would not be able to base the treat-
ment on inconsistent information, which is under constant
modification. On the other hand, reproducible results collab-
orate to acquisition of historical information and tendency
analysis. Through the comparison of data from the lesion,
obtained in different moments, the specialist obtains infor-
mation which can have diagnostic as well as therapeutical
implications.

This paper is organized in the following way: Section 2
presents a series of works concerning the matter of auto-
matic detection of lung nodules and aims to demonstrate the
present development stage of researches in this field. Section
3 describes the central points of the methodology being com-
posed by subsections which correspond to its stages. Section
4, the contributions of the work are listed as well as the results
we obtained. Finally, Section 5 presents the conclusions.

2. Related works

The development of medical images acquisition techniques,
in particular computerized tomography (CT), which may fur-
nish more detailed information about the human body, has
increased the capability and fidelity in the diagnosing of many
diseases. On the other hand, the dimensions of these images
are becoming bigger and bigger, increasing the need for com-
puter vision techniques that can make interpretation easier.
This Section aims to provide an overview of literature in auto-
matic CT image analysis in the lung region.

The work of Beigelman-Aubry et al. [4] presented eval-
uation of nodule detection and its response time when
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performed by radiologists with and without use of a comput-
erized system. The work showed that the system improves
the sensibility of the detection, what raised the trust interval
in 2%. Among the experiments with 109 patients, there was a
nodule which was not detected by one of the radiologists, but
was detected by the system. Besides, the use of the system
decreases considerably the time required by the specialists to
analyze the exams.

This way, nodule detection systems, have greatimportance
in this process, despite they do not give the final diagnosis.

Nodule detection systems usually involve four steps: pre-
processing, extraction of nodule candidates, reduction of false
positives and classification. Pre-processing normally consists
in restricting the search space, delimiting the lung, and reduc-
ing noises in the image. The region of the lung is segmented
and nodule candidate objects are identified. Among these
objects most of the non-nodule are discarded in the false posi-
tive reduction stage. The remaining objects are then classified
into nodule and non-nodule. In some methods, the false posi-
tive reduction is performed after classification. Some works
found in the literature involving these steps are presented
next.

Armato and Sensakovic [5] showed the importance of ade-
quate segmentation of lungs in computer aided detection
and/or diagnosing systems. His studies indicated that up to
17% of lung nodules can be lost during lung segmentation if
the algorithm is not adjusted to the task of nodule detection.

A great challenge is the segmentation of lungs affected by
high density pathologies connected to their bounds. Due to
the lack of contrast between these pathologies and the tissues
adjacent to the lung, density-based methods fail in this region.
In this case, it is necessary some edition technique, but, even
so, part of the lung is normally lost [3].

Due to the large amount of air in the lung, its interior has
dark tonality in CT images, differing from the region around
it. This way, contrast between lung and neighbor tissues is
the basis for most lung segmentation methods. Most methods
is based on rules [6-8]. The lung region can be found by two
ways [3]. The first one is by means of region growing starting
at trachea. The second one, more usual, used thresholdings
and restrictions in size and location.

To find nodule candidates, the main techniques used
are multiple thresholding [9-12], mathematical morphology
[13-16], clustering [17-20], analysis of connected elements in
thresholded images [21,22], detection of circles in thresholded
images [23] and use of emphasis filter with spherical structure
elements [24-26].

In Osman et al. [27], for each slice, regions of interest (ROI)
were found by using density values of the pixels and analyzing
their eight directions. The joining of all slices formed 3D ROIs,
which compared to a nodule model (template) allows identi-
fying the nodules. Sensibility reached 100%, but the test data
were restricted to six cases.

Retico et al. [28] proposed a system based on emphasis fil-
ters for spherical objects and a neural classification based on
voxels of selected regions to reduce false positives. The sys-
tem performance was evaluated in a set of data from 39 CT
and reached 80-85% of sensibility and 10-13 FP/exam.

Bae et al. [29] developed a computer aided diagnosis (CADx)
for high-resolution CT images (HRCT - high-resolution com-

puted tomography) using bi-dimensional and tri-dimensional
analysis algorithms. This technique was tested in eight lung
cancer cases and obtained 95% of sensibility and 0.91 FP/slice.

To improve the sensibility of the detection, Li et al. [30] used
an emphasis filter in the identification stage and, to reduce
false positives, used a rule-bases classifier.

Having the nodule candidate objects been generated, char-
acteristic features of these objects are calculated. Classifiers
are then applied. These classifiers use the features to iden-
tify candidate objects either into the nodules set or into the
non-nodule set.

Several techniques can be used as classifiers in the final
stage of nodule detection: based on either rules or linear classi-
fiers [31,32,24], by combining models (template matching) [33],
analysis of the nearest cluster [13,15], support vector machine
[34-36], neural networks [37-39] and Bayesian classifier [40,41].
The features mostly used for classification are features based
on the density of voxels, description of shapes, spatial relation
and size information.

da Silva Sousa et al. [42] proposed a set of three morpholog-
ical features specially developed for characterization of lung
nodules with which matching rates of 100% were achieved
using support vector machine, despite this work used a small
database.

In some works, the classifier presents good sensibility, but
also a high number of false positives. This way, techniques
have been looked for, in order to reduce this number after
the identification that, in some cases, work as filters before
classification.

Armato et al. [9] presented a methodology for the detection
of lung nodules with just the pre-processing stages, candi-
dates detection and classification. Nodule candidates were
found by multiple thresholding and, next, using shape and
density attributes and discriminant linear analysis, the clas-
sification detected 70% of the nodules indicated by specialists
and three false positives per slice in average (approximately
80-90 false positives per exam). In later papers, Armato and co-
authors focus in rules to reduce the number of false positives:
rule-based [43,44], discriminant analysis [44,45] and neural
networks [44,46]. The best result obtained by these techniques
was of 80.3% in detection rate win 4.8 false positives per exam
against 27.4 without false positives reduction [46].

Saita et al. [22] added to the nodules detection methodology
proposed by Oda et al. [21] a false positives reduction stage.

Lee et al. [47] added the false positive reduction stage to the
nodules detection method initially proposed by Lee et al. [31].
To do this, they added five density attributes and adjusted the
thresholding parameters to the original model. The sensibility
continued the same in 72.4% but the FP rate decreases from
30.8 to 5.5 per exam.

False positives reducing is important, because, even if sen-
sibility keeps unaltered, the radiologist’s final amount of work
is reduced.

3. Methodology

This section presents, under the form of a sequence of stages,
the procedures proposed to perform the detection of lung
nodules in a CT in an incremental manner. This incremen-
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Fig. 1 - Methodology stages.

tal approach is presented in counterpoint to others which try
to identify the possible nodules in one single step. Another
important aspect of the methodology is the adoption of spe-
cific strategies for nodule detection in particular conditions,
such as nodules linked to the chest wall, aggregated to the
bronchi or blood trees, and the single ones.

The proposed methodology corresponds to the application
of several successive stages of processing to CT images, elim-
inating portions of them which do not correspond to interest
areas, in this case, lung nodules. As we can see in Fig. 1, the
thorax extraction initially occurs by the use of regions grow-
ing [48], described in Section 3.1. In this stage all the artifacts
external to the patient’s body are discarded.

In the sequence occurs the lung extraction (Section 3.2),
responsible for the identification of the lung parenchyma. In
this stage the region growing algorithm is used again, being
responsible for removing thoracic wall and mediastinum.

The next stage, lung reconstruction (Section 3.3), is impor-
tant to prevent incorrect elimination of portions belonging to
the parenchyma. This stage is strategic for peripheral nod-
ules detection and is fundamentally based on the rolling-ball
algorithm.

(b)

The next step is the parenchyma structures extraction
(Section 3.4). This step comprises the selection of dense struc-
tures from inside the lung parenchyma with the use of region
growing. After that, the tubular structures elimination stage
(Section 3.5) eliminates a great part of the pulmonary trees
based on their morphological characteristics.

The final stage is the false positive reduction (Section 3.6).
In this stage, SVM classify the structures coming from the
previous stage, selecting only those with indicatives of being
actual lung nodules. Fig. 2 presents a CT slice consecutively
submitted to this process.

3.1. Thorax extraction

The process is started with thorax extraction. This stage com-
prises the removal of all artifacts external to the patient’s body,
among which are bed sheets, the air that involves him and the
surface on which he lies as example of the items numbered in
Fig. 2(a).

These structures are identified by a 2D region growing algo-
rithm, that use four seeds for each slice, initiated on its four
corners. The similarity criterion for the algorithm is based on

(2) (h)

Fig. 2 - Automatic lung nodule detection sequence. (a) Eliminates of all artifacts external to the patient’s body, identified
with 1 and 2 in the figure. (b) Removal of thorax remaining just the parenchyma. (c) Shows an example of the internal lung
region and the thoracic wall erroneously eliminated. (d) Reconstructed parenchyma with rolling-ball algorithm. (e) 3D
visualization of the remaining structures after threshold application and identified with different colors. (f) 3D visualization
of the structures after tubular elimination. (g) Shows the correct identification of a lung nodule among other normal lung
structures which came from the previous stage. (h) Presents the same nodule identified in the original tomography image

by an arrow.
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Fig. 3 - Diagonal histogram of a CT exam slice.

gray tones of the voxels, for great part of the external region
of the thorax (which we want to identify) is formed by low
intensity voxels.

The gray tone range used, however, is dynamically deter-
mined through the analysis of the histogram of the voxels that
constitute the main diagonals of all slices, cumulatively, as in
Fig. 2(a). In a typical histogram of a thorax CT image, seen in
Fig. 3, there are two well -defined peaks: peak 1 is formed by
low intensity voxels that constitute the lung parenchyma and
the thorax external region; peak 2 is formed mainly by voxels
from the thoracic wall and mediastinum.

This way, the central point that separates the peaks of the
histogram is taken as a threshold and the region growing algo-
rithm will identify all the voxels that have values that are
smaller than the threshold, which are associated to the arti-
facts that we wish to identify. The L threshold is obtained by
L= (p1 +p2)/2

The need for association between the region growing and
the thresholding algorithms comes from the fact that the first
one, by itself, would not be able to distinguish the low intensity
voxels from the thorax external region from those belonging
to the lung parenchyma, resulting in the elimination of both.
Anotherreasonis that even in the thorax external region there
are regions with high density, as we can see in the structure
identified with number 1 in Fig. 2(a).

This way, the region growing algorithm, having the thresh-
old as the stopping criterion, is able to identify only the thorax
external dark voxels, not affecting those belonging to the
parenchyma, because there is a range of high intensity vox-
els which constitute the thoracic wall, avoiding the union of
these two regions. That is, even with similar intensity values,
the regions are disconnected and the seed put in one region
does not propagate to the other.

However, as already said, in the thorax external region
there are more dense structures too. In order to treat these
cases, the region growing algorithm was altered to allow the
identification of these structures. The modification consisted
in the inclusion of a spatial tolerance that allows the region
growing to penetrate in areas outside the similarity criterion.
This tolerance, however, is decreased as the growing goes on,
making only relatively affiliated structures to be removed. The
extra growing is limited by tolerance, which is the maximum
distance that it can expand beyond the normal region. A five-
pixel tolerance value was experimentally found.

The result of the application of this detection stage to a
CT can be seen in Fig. 2(b), on which the voxels associated to
the thorax external region have value zero, which means that
these structures will not be considered in the processing of
the following steps.

3.2.  Lung extraction

The objective of lung extraction is to identify the thoracic wall
and mediastinum voxels, making possible the work on the
next stages just with the region which forms the pulmonary
parenchyma. That is achieved again with use of the region
growing algorithm, this time, however, identifying the high-
intensity voxels with values greater than the threshold and
with no need for tolerance.

The threshold value used in the step is calculated with
basis on the diagonal histogram, as already commented. For
this case only the voxels which were not discarded in the pre-
vious stage are considered. The resultant histogram is similar
to the one presented in Fig. 3, being the threshold obtained in
the same way.

The initial growing seed, as can be seen in Fig. 2(b), is
released in the first voxel of the thorax situated over the main
diagonal of each slice. The final result, after the growing and
elimination of the high intensity voxels can be seen in Fig. 2(c).

The voxels which do not belong to the pulmonary
parenchyma area are eliminated by giving them intensity
value zero.

3.3. Lung reconstruction

Occasionally the lung extraction stage erroneously eliminates
some voxels which belong to the pulmonary parenchyma.
These mistakes can lead to elimination, inclusively, of pos-
sible nodules, inducing an error in detection. This way, the
reconstruction stage has great importance for preservation of
peripheral nodules.

Fig. 2(c) shows an example of an internal lung region and
the thoracic wall erroneously eliminated together, due to its
high intensity voxels.

In order to perform the reconstruction of the incorrectly
eliminated lung outline, a previous knowledge about the
object which is being segmented is used. It is known that the
lungis an organ with a soft outline, without re-entrances. This
way, any hole or abrupt discontinuity found on its outline is
a strong indication of failure in the perimeter and it must be
reconstructed.

In order to recover the correctlungs outlines, this stage uses
the rolling-ball Algorithm [18], a mathematical morphology
technique based on closing operations executed with a cir-
cular structuring element, whose radius, in this specific case,
was of 30 pixels.

The size of the radius of the structure element is directly
related to the maximum size of the irregularities that the
rolling-ball algorithm will discard in reconstruction. For too
small radiuses, bigger nodules (in the bounds) will not be rec-
ognized and will be discarded with the mediastinum. If the
radius is too big, the reconstruction will start altering the very
bounds of the lung, being even able to join both lungs into one.
The ideal size was found through several tests for the exam
database used.

3.4.  Parenchyma structures extraction

The previous stages had the main objective of detecting the
pulmonary region, but only in this stage, in fact, the search
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Fig. 4 - Typical histogram of a CT slice just with the
pulmonary parenchyma.

for lung-internal regions occurs. This stage is performed in
two steps: the first one identifies and removes the less dense
parenchyma tissue out from the image, keeping only its
internal structures; the second one isolates each of the tri-
dimensional structures found so that they can be individually
processed.

The elimination of less dense tissues is performed by
means of a thresholding process. The proper threshold is once
more obtained from the volume voxels histogram, being con-
sidered only those parenchyma-internal. This time, however,
the histogram graphic shows that there are not well-defined
peaks anymore, as shown in Fig. 4. This is the result of the
decreasing on the number of high-intensity voxels related to
the low-intensity ones.

As consequence, it becomes more difficult to choose the
proper threshold for elimination, in such a way that its deter-
mination must be stricter than the previous ones.

This way, it was empirically verified that the threshold L is
located on the inflection point of the histogram curve, right
after the end of the p peak formed by the low-intensity voxels.
L and p are represented in Fig. 4.

More formally, having the histogram been normalized
between 0 and 100 in such a way that h(p) = 100, the L thresh-
old is the smaller value that meets the conditions L > p and
h(L — 1) — h(L) < 1. That is, the threshold is the exact point
where the peak ends and the planner region that follows
it starts. We consider this point as that where the deriva-
tive of the histogram reaches value 1. The value of L is
sensitive. If it is shifted left just a little, the pulmonary
structures get too broad. If it is shifted right they get too affil-
iated.

Finding this threshold, it is possible to eliminate all the
voxels which are below this value, obtaining a result that is
similar to the one seen in Fig. 2(e). We can notice on it that
structures such as blood vessels, bronchi and nodules are
preserved, while the major part of the parenchyma is sup-
pressed.

Nevertheless, these structures need to be separated,
individually, before the nodules can be identified. Each tri-
dimensionally connected structure is so identified through
a region growing algorithm which starts in each voxel of
the structures that are not isolated yet. The result of this
stage is that every tri-dimensionally connected region can be
individually processed from this point. Fig. 2(e) shows each
tri-dimensional structure identified with distinguished colors.
Each color was randomly chosen and has no special meaning
(For interpretation of the references to color in this sentence,
the reader is referred to the web version of the article.).

3.5. Tubular structures elimination

We observed that among the objects identified by the 3D
connectivity property exist structures that correspond to the
bronchial and vascular trees. Besides, there are cases where
each nodule is connected to one or more of these structures.
This creates a problem for the detection of these nodules,
generating the need for identifying the bronchial and vascu-
lar trees of the pulmonary parenchyma so that distinguishing
these trees from possible nodules can be possible.

Blood vessels are, as a rule, tubular. The depth of the medial
axis varies very gradually, inclusively in ramifications. In other
words, blood vessels have thickness almost constant in a cer-
tain location. Nodules have totally different characteristics. As
they are compact structures, they present an abrupt increase
in the depth of the medial axis. This is perceived more clearly
in spiculated nodules. The process consists in verifying to
which of both patterns the structures match better. With this
objective, observing the structures to be identified, we use an
analysis based on their skeleton. This is possible since they
resemble very much their medial axis, obtained by means of
the 3D skeletonization algorithm proposed in [36].

The idea behind skeleton-based segmentation is to detect
regions, or voxel sequences belonging to the medial axis of
the structures, which show low variation of the average depth,
that is, the average distance from the medial axis in relation
to the border of the object. This pattern is characteristic of
tubular structures, such as those ones which are necessary
to be eliminated. For this we defined thresholds capable of
making this distinction. It is important to stress that the first
threshold measures the intensity of the thickness variation of
the structure along the medial axis, that is, it is the derivative
of the thickness in the axle. The second threshold performs
the percent relation between the thickness variation and the
very thickness in order to estimate its representativeness.

As an example of what has been said, one can notice
in Fig. 5(a) that the highlighted branch probably represents
a blood vessel. The observation of the average depth of its
medial axis on Fig. 5(b) allows us to notice its low variation.

On the other hand, the structure indicated in Fig. 5(c) has
great potential to be a nodule aggregated to a vessel. The same
analysis on the average depth of the voxels of its skeleton
indicates a very different pattern. As in Fig. 5(d), we notice
an abrupt increase of values from the nodule border, behavior
that can be used for detection.

The bifurcations among the vessels possibly present an
increase in the depth of the medial axle, but this increase,
besides being small when compared with the diameter of the
vessel, is gradual. On the other hand, in the case of aggregated
nodules, the increase in the depth of the media axle is much
more abrupt and intense. With the correct balance of cutoff
thresholds it is possible to come to a stage that results in few
false positives or false negatives, with a good sensibility. Any-
way, errors generally occur in this stage, making necessary the
posterior stage of reducing false negatives and false positives,
which, in our case, was based on SVM.

For each individual structure, the skeleton is calculated.
After that, all of its segments are scanned sequentially. Dur-
ing the scan of each segment the maximum value of depth is
selected and its neighborhood with the same pattern is also
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Fig. 5 - Analysis of the medial axis of some structures.

selected. The selection of the neighborhood must consider the
average depth of the adjacent medial voxels and the variation
from one to another, in sequence.

After theregion is selected, itis previously evaluated. A very
large rate between the length of the selected part of the branch
and its thickness clearly indicates a tubular region. However,
a great thickness in relation to the length indicates a compact
structure, possibly a nodule.

Fig. 6 shows the pseudocode responsible for analyzing
the skeleton branches of each structure and determining the
regions with nodule characteristics, which will be considered
candidates for the next stage.

This process allows solving a difficult case of lung nodule
detection, which is when they adhere to the pulmonary trees,
making the correct delimitation of its bounds more difficult.

The structures with excessively affiliated shape to be alung
nodule are readily eliminated. The remaining structures are
considered candidates to lung nodules and pass to the next
stage. An example can be seen in Fig. 7(a) where we can notice
a nodule connected to several blood vessels. Fig. 7(b), on the

for each isolated structure

other hand, presents the same region after the elimination of
these vessels.

3.6.  False positives reduction

False positives reduction is the stage in which the detection
is refined by eliminating the false lung nodules. For that, we
used the support vector machine (SVM) [49] previously trained
to recognize the true nodules with basis on a series of descrip-
tive characteristics. This work used characteristics commonly
used in other works [50,34] and [51] with the same objective,
but with new characteristics as well, especially developed for
describing lung nodules and distinguishing them from other
pulmonary structures.

The complete list of the studied characteristics is geom-
etry (spherical disproportion, spherical density, pondered
radial distance, sphericity, elongation, Boyce-Clark radial
shape index), texture (contrast, energy, entropy, homogeneity,
moment), histogram (average, standard deviation, skewness,
kurtosis, energy, entropy), gradient (average, standard devia-

generates structure skeleton
scans the branches of the generated skeleton
eliminatesVessels (branch]:

function: eliminatesVessels (branch)

{
gets the maximum intensity voxel of the branch
gets the neighborhood of the maximum that maximizes the declivity
if neighborhood characterizes a nudule
considers neighborhood as a nodule
else
{
eliminates neighborhood for it is a vessel
eliminatesVessels (rest of the branch):
}
1

Fig. 6 — Pseudocode for the elimination of tubular structures.
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(a)

(b

Fig. 7 - Tubular structures elimination.

tion, skewness, kurtosis, energy, entropy) and spatial (location
of the candidate). The equations and details for all those mea-
surements can be found in [36] or in AppendixA.

The set of characteristics extracted from every candidate
origins a vector which characterizes them. As each character-
istic, however, bears on one isolate aspect of the candidate, it
occurs that many of them are in different units and frequently
in disproportional scales.

To minimize the complexity of the model and speed up
the process, we attempted to select a subset of characteristics
which are more significant for classification. We empirically
tested several subsets of characteristics and verified which
one had the best performance. The starting model had 24
variables and after selecting the best subset, there were 8
variables left: geometry (spherical disproportion, spherical
density), histogram (standard deviation, skewness, entropy),
gradient (standard deviation, kurtosis), and spatial (location
of candidate).

The adoption of the vector, such as obtained after calcu-
lating these characteristics would cause some of them to be
overestimated by the SVM classifier due to the numerically
greater value, while others, because they vary in smaller inter-
vals, would be underestimated. This way, the characteristics
vector must be normalized so that all the characteristics have
the same representativeness.

After all candidates have been completely measured and
described, each one by a normalized characteristics vector,
these vectors are passed to the SVM, which uses the previous
knowledge, obtained by the analysis of other seemingly cases,
to identify the real nature of each candidate, recognizing them
as lung nodules or as normal lung structures. As SVM kernel,
we used the radial basis function. The library LIBSVM [24] was
used for training and validation of the SVM classifiers.

Fig. 2(g) shows the correct identification of a lung nodule
among other normal lung structures which came from the
previous stage. Fig. 2(h) presents the same nodule identified
in the original tomography image by an arrow.

4, Results and discussion

The images used herein were provided by Fernandes Figueira
Institute and Pedro Ernesto University Hospital - both from

Rio de Janeiro city - for a CAD tool development project. They
were obtained from different real patients, comprising a total
of 33 nodules (23 benign and 10 malignant ones).

The images were acquired with a Helical GE Pro Speed
tomograph under the following conditions: tube voltage
120kVp, tube current 100mA, image size 512 x 512 pixels,
voxel size 0.67mm x 0.67 mm x 1.0mm. The images were
quantized in 12 bits and stored in DICOM format [52].
All the images were obtained in apnea after deep inspira-
tion.

Itis important to stress that the CT exams were performed
without contrast injection, which may be clinically used in
order to improve diagnosis but also causes some morbidity
and occasional mortality due to allergic complications.

It is also necessary to highlight that the nodules were
previously diagnosed by physicians and that the final diag-
nosis of benignity or malignancy was further confirmed by
histopathological exam of the surgically removed specimen or
by radiological 3-year stability. This also explains the reduced
size of the present sample.

In our work the size of the nodules is considered to be the
maximum diameter of the sphere that involves the most dis-
tant points in axes xy or z. According to this definition, the
mean diameter of the benign nodules was 23.72 mm (stan-
dard deviation 13.34) and the mean diameter of the malignant
nodules was 40.93mm (standard deviation 17.86). There are
some nodules that have a diameter equal to 3mm or less in
the xy axis (the most common definition of a nodule), but in
the z axis their diameteris larger than 3 mm. The data set used
contains malignant nodules with mean diameter larger than
those of benign ones, what very common.

The general characteristic of malignant nodules being
larger than benign ones is known and normally found in spe-
cialized literature [53]. But this does not mean that there is a
cutoff diameter to separate malignant from benign nodules. In
the studies, usually only percentages are given. In a revision
study of patients with either screening-detected or inciden-
tally detected lung nodules, the prevalence of malignancy was
about 6-28% in nodules that measured from 5 to 10mm in
diameter, and 64-82% in nodules that measured over 20mm
in diameter [54].

In our work the smallest malignant nodule had 12 mm of
diameter and the smallest benign one had 7 mm, but there
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were malignant nodules that presented, for example, diame-
ters of 28 and 29 mm while there were benign nodules with
diameters of 35 and 36 mm. In spite of diameter being a gen-
eral reference and being included in the Bayesian method to
aid in the distinction between benign and malignant nodules,
it does not have a decisive value by itself [55].

The evaluation of the matching statistics was done using
the cross-validation process [56] on the sample. It takes, at
each iteration, a group of two arbitrary elements for test and
the others for training, that is, each nodule candidate that
was part of the test base was, occasionally, and in different
iterations, used for training or validation, according to the
group for which it was selected in each moment. This kind
of validation allowed the use of all of the segmented struc-
tures to obtain a more consistent training and a more precise
validation.

In order to evaluate the methodology performance, two
measurement criteria were adopted. The first one was the
adoption of statistics related to nodule candidates classifi-
cation, the second one was the false positive and negative
medium rates per exam.

In order to evaluate the classification capability of the nod-
ule candidates, their sensitivity, specificity and accuracy were
considered. Sensitivity is defined by TP/(TP + FN), the speci-
ficity by TN/(TN + FP) and the accuracy by (TP + TN)/(TP + TN +
FP + FN), where TP is the number of correct positive classifica-
tion cases, TN is the total number of negative classification
cases which are also correct, FP and FN are the erroneously
classified cases, positive and negative, respectively.

The false positive and false negative per exam rates were
measured as well, which are more significant performance
measurements than the previous ones in CAD evaluation
because they depend equally on detection and classification.
The false positives per exam rate is given by FE = FP/n, where
nis the number of exams used in tests. The false negative per
exam rate is given by FS = FN/n.

As the result of the tests and according to the above
described criteria, we found a false positive per exam rate of
0.42 and 0.15 of false negatives. These results indicate a good
detection power of the methodology as a whole, but it can be
improved.

The total sensitivity of the classification obtained, mea-
sured on the nodule candidates, was 84.84%. The specificity
achieved was 96.15% and the total accuracy of the method
was of 95.21%.

Referring to the error distribution over the set of exams,
we can notice that more than a half of the exams (57%) were
correctly classified, that is, without occurrence of false posi-
tives or negatives. On the other hand, we can notice that the
occurrence of more than one error in the same exam was 12%
of our database.

Comparatively, in [51] the author obtained a rate of 1.25
false cases per exam using a CAD mainly based on geomet-
ric characteristics. Chang [24] reached 0.88 false positives per
exam and 100% of sensitivity through sphericity tests, but
used areduced database with just eight exams. Zhangreached
83.9% of accuracy and 3.5 false positive per exam with his
method [39].

Among the metrics used for describing lung nodule
candidates, those that showed to be more efficient were geom-

etry (spherical disproportion, spherical density), histogram
(standard deviation, skewness, entropy), gradient (standard
deviation, kurtosis), spatial (location of candidate). These,
then, were chosen to form the characteristics vector since they
showed better results after a performance analysis among
many others tested.

It was noticed that the measurements related to the gray
tone, as well as to texture and gradient were not as descrip-
tive as expected. It was observed that, generally, due to low
resolution of the images obtained by present CT exams, the
particularities of the tissue, which could identify nodules and
non-nodules, are not totally acquired. This way, and following
the tendency of the related literature, the geometrical charac-
teristics play the main role in detection.

Vertical gradients in CT represent variations of lung den-
sities in function of gravitational influence in vascular tree.
This finding is more pronounced when CT images are obtained
in expiration phase closed to residual volume (RV) and less
when they are obtained in inspiration phase at total lung
capacity [57]. In the present work all images were obtained
in apnea after deep inspiration and in this way is expected
that the vertical gradients do not arise a special problem to
the present automatic program. However, changing in inter-
stitial lung component or increasing in vascular hydrostatic
pressure caused by some associated lung disease may cause
detection problems. In this case, automatic program prob-
ably will be affected at threshold phase by an increase of
density around the nodule. To evaluate this possibility, it
will be necessary in future studies include a selected group
of patients with specific patterns like fibrosing alveolitis or
cardiac disease. Recently, it has been proposed that mor-
phological aspects of respiratory and vascular trees can also
contribute to vertical gradients beside gravitational force
[58].

It was verified that the time necessary for a complete detec-
tion varies, depending on the case under analysis and the
number of slices which compound it. The average time stood
around 8 min in a computer with an Athlon XP 2000+ processor
and with 1.5 GB of memory.

4.1. Case study — successful detection

This section presents the illustrated step-by-step details of a
successful detection case performed on an exam on which
the nodule was detected by a specialist according to Fig. 8.
This process is described with basis on the volume, orig-
inally obtained through reconstruction of the slices, as in
Fig. 8(b).

Fig. 8(c) is the result of the thorax segmentation through
elimination of external artifacts. Fig. 8(d) is the result of
segmentation of the parenchyma and its reconstruction to
prevent elimination of peripheral nodules.

The elimination of the soft tissues of the parenchyma
allows the obtainment of just the denser structures inside it.
The result of this stage can be seen in Fig. 8(e). Next, in Fig. 8(f),
these structures are isolated and only those resembling a nod-
ule are selected as candidates.

The classification result was correct. SVM did not consider
the other structures and considered as nodule only the struc-
ture emphasized in Fig. 8(g) and (h).
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(d)

(€ ()

Fig. 8 — Case study - successful detection. (a) and (b) are 2D and 3D visualization of the original CT exam. (c) Eliminates of all
artifacts external to the patient’s body. (d) Removes thorax just remaining the parenchyma and shows the reconstructed
parenchyma. (e) 3D Visualization of the remaining structures after threshold application. (f) 3D Visualization of the
structures after tubular elimination. (g) Shows lung candidates before SVM classification. (h) Shows correctly detected
nodule in the original CT.

4.2. Case study — unsuccessful detection The process starts the same way as the successful
case, demonstrated in the previous section. Fig. 9(a) shows

As not all nodules were correctly detected, this section shows the initial volume and Fig. 9(b) shows the segmented

one case where there was a detection failure. As far as possible thorax.

an analysis on the causes which could have led to omission The parenchyma extraction stage, however, as can be seen

will be done. in Fig. 9(c), incorrectly eliminated some internal structures,

(d) (2)

Fig. 9 - Case study - unsuccessful detection. (a) 2D visualization of the original CT exam:. (b) Eliminates of all artifacts
external to the patient’s body. (c) Removal of thorax just remaining the parenchyma and shows the incorrectly eliminated
internal structures, making necessary the reconstruction of the lungs perimeter. (d) Shows the reconstructed parenchyma.
(e) 3D Visualization of the remaining structures after threshold application. (f) Shows that the elimination of the blood
vessels resulted in the elimination of part of the nodule, damaging the detection. (g) Shows the original CT and as the
contour nodule is very fuzzy.
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making necessary the reconstruction of the lungs perimeter.
As Fig. 9(d) illustrates, the reconstruction step was successful
and the structures were recovered.

Fig. 9(e) shows the result of segmentation of lung internal
structures. In this case, differently from the previous, occurs a
large concentration of vessels all over the parenchyma, mak-
ing nodule identification more difficult.

In fact, Fig. 9(f) shows that the elimination of the blood ves-
sels resulted in elimination of part of the nodule, damaging the
detection.

Through Fig. 9(f) we can guess the reason which led to
failure in the detection of this spiky points nodule. It can be
noticed that the nodule outlines are not well defined, making
its clear delimitation more difficult.

Another factor of possible confusion is the large vascular-
ization of the area, which, in addition to the formless aspect of
the nodule, caused it to be eliminated with the tubular struc-
tures.

Nodule volume precision is an important feature to deter-
mine the malignity or benignity of the nodule. In this work we
focus on the identification of the presence or absence of nod-
ules, and in the case of presence, we focus on determining
its location. We did not worry about the volume determina-
tion precision. But we also made a simple and manual test,
comparing the automatic segmentation using the method-
ology proposed in this paper and a semi-automatic process
made by a specialist. Comparing the results we find an aver-
age error rate of 15% that we believe is too high. Unfortunately
we cannot give further details about the comparison because
we did not perform a deep analysis. Therefore, the proposed
segmentation must be also improved to be more adequate to
some cases, as for example the case where the nodule border
is not well defined.

5. Conclusion

This work proposes a methodology for automatic detection
of lung nodules; a stage that precedes the diagnosis prop-
erly said, but that demands effort and experience from the
specialist.

The methodology proposed in this work, besides auto-
matic, is based on simple algorithms, most of them of
easy implementation and, in general, fast. This gives to
the methodology the quickness and efficiency necessary for
processing a large volume of data, always taking into consider-
ation the time restrictions related to any process that involves
human health.

As previously described, the stage of separating the nodule
from pulmonary trees is strongly based on a skeletoniza-
tion process. Algorithms in this category have been used
in diagnose-aiding tools, especially in the characterization
of morphology with the objective of verifying the malig-
nancy of the nodule [59], but the approach used here, relating
them to detection, represents an innovation with satisfactory
results.

Finally, new geometric characteristics were especially
developed to evaluate the morphology of pulmonary struc-
tures in the classification of nodules and non-nodules. These
geometric characteristics, numerically measurable, which

were projected for this specific problem, showed results that
are better than others of general use.

The inexistence of user-defined parameters and the
absence of human participation in the detection of the nodule
or random components reinforce the segmentation repro-
ducibility. Independently on who is operating the software or
on his experience, the result is always the same. This is also
a characteristic that allows the batch processing of a large
number of different exams. It is possible to select all of the
exams that we want to process and obtain in a single step the
results for all of them, with no intervention, needing only the
posterior validation of a specialist.

In addition, the methodology is composed of consecutive
stages that gradually produce the final result of segmentation.
The low coupling of these stages allows their easy expansion
with the objective of improving results or even to treat differ-
ent cases and situations.

As a result of the executed tests, we verified a false pos-
itive per exam rate of 0.42 and a false negative rate of 0.15.
The total sensitivity of the classification obtained, measured
out of the nodule candidates, was 84.84%. The specificity
achieved was 96.15% and the total accuracy of the method was
95.21%.

The matchingrates discussed demonstrate that thereis the
technical viability for implantation of the methodology. Con-
cerning the needs for it, statistics related to lung cancer clearly
indicate that methods for helping in precocious diagnosis of
lung nodule may increase the patient’s survival chances.

Due to the high sensitivity per exam, this tool has triage
exam characteristics, that is, belongs to the first set of exams
to be required, which identify the suspicious cases, but need
to be confirmed later, by more strict exams, in this case, the
medical analysis.

Lung cancer, in the same way it occurs in the greatest part
of the world, has a considerable prevalence in Brazil. It is the
second commoner kind of cancer among men and the forth
commoner among women in most part of Brazilian regions.

Since precocious diagnosis represents a considerable
increase in the patient’s survival chances, the proposed
methodology promotes this increase, as it is shown as a very
useful tool for the specialist in the attempt to anticipate more
and more the nodule identification.

Another point is that the public network of hospitals in
some places suffers from the lack of specialists. The resources
to increase the staff, however, are also limited. Redirecting
qualified craft of the available specialists to less repetitive
tasks may mean making better use of their skills. One step
in that direction is to use the proposed methodology in the
preliminary analysis of CT exams, being the specialist just in
charge of validating the result.

Finally, the proposed methodology also is a financially
attractive solution because it works on simple microcomput-
ers, many of which are already available in the hospitals. Large
investments in infrastructure would not be necessary for its
implantation.
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Appendix A. Features used in this study

A.1. Geometric features

A.1.1. Spherical disproportion

Spherical disproportion measures the regularity of the borders
of an object. It is given by Eq. (A.1), where R is the radius of the
sphere with the same volume V of the object obtained through
Eqg. (A.2). A is the area of the object

A
- (A1)
NEY
R=1/2 (A2)

A.1.2. Spherical density

The spherical density measures how much compact an object
is. It is given by Eq. (A.3) where n is the number of voxels with
tone value pyy - such that pyy . # 0 and (x — My)? + (x — My)? +
(x — My)? < R2, Vis the volume of the object, R is the estimated
radius obtained through Eq. (A.2) and My, My, M, are the coor-
dinates of the object’s mass center

100n

E=
\%

(A3)

A.1.3. Pondered radial distance

The pondered radial distance measures the flatness degree of
an object, being obtained by Eq. (A.4), where R is the estimated
radius obtained through Eq. (A.2), cxy.; is the pondering coef-
ficient applied to each voxel through Eq. (A.5) and ryy ; is the
radial distance of the voxels with coordinates x, y, z

Drp = R’lzcx,y,z (A.4)

X,y.2

2 [egs +0.5)° — —057] " (A.5)

4x (rxy.z

Cxy,z =
A.1.4. Sphericity

Sphericity measures how much the shape of the object
approximates of a spherical shape. It is obtained through Eq.
(A.6), where V is the volume of the object and A is its area

Es = (6V?/Ir3) A (A.6)

A.1.5. Elongation

Elongation measures the elongation or asymmetry degree of
an object. It is calculated through Eq. (A.7) where Arp, is the
measurement of the smaller corner of the minimal box, while
Armax is the measurement of the bigger corner

ATmin
ATmax

El= (A7)

A.1.6. Boyce-Clark radial shape index

This feature measures the regularity of the shape of an object.
Itis obtained through Eq. (A.8), where nis the number of voxels
in the bounds of the volume and r; or r, are the distances of

specific border voxels to the mass center of the object

n
1007; | 100
Bc = Z n - (A.8)
e
k=1

A.2. Texture features

The texture features were calculated on the co-occurrence
matrix of the volume, which is given by Eq. (A.9), where v is
the function that gives one of the 26 tri-dimensional neigh-
bors of a voxel according to the index o and Py y - is the value
of a voxel of coordinates x, y, z

Co(i, j) = {quant(Pxy.z, V(Px.y.z. @))|Pxy,z
=1, U(Pxyz o) =jac{l, ..., 26}} (A.9)

A.2.1. Contrast

G-1G-1
Con = ZZCO(L i)i—j)> (A.10)
i=0 j=0
A.2.2. Energy
G-1G-1
Ene = ZZCO(L j)? (A.11)
i=0 j=0
A.2.3. Entropy
G-1G-1
Ent = ZZ — Coi. j) log(Co(i. j)) (A.12)
i=0 j=0
A.2.4. Homogeneity
G-1G-1
Hom = o(i,j A.13
> ) w13
i=0 j=0
A.2.5. Moment
G-1G-1 CO 1)
Mom = ZZH“_” (A.14)
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