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Abstract: We consider a class of topological defects in (1, 1)-dimensions with a deformed

φ4 kink structure whose stability analysis leads to a Schrödinger-like equation with a zero-

mode and at least one vibrational (shape) mode. We are interested in the dynamics of

kink-antikink collisions, focusing on the structure of two-bounce windows. For small de-

formation and for one or two vibrational modes, the observed two-bounce windows are

explained by the standard mechanism of a resonant effect between the first vibrational

and the translational modes. With the increasing of the deformation, the effect of the

appearance of more than one vibrational mode is the gradual disappearance of the initial

two-bounce windows. The total suppression of two-bounce windows even with the pres-

ence of a vibrational mode offers a counterexample from what expected from the standard

mechanism. For extremely large deformation the defect has a 2-kink structure with one

translational and one vibrational mode, and the standard structure of two-bounce windows

is recovered.
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1 Introduction

Solitary waves are important objects of investigation in several areas of nonlinear physics

in all scales, from low-energy [1] to high-energy physics [2]. The simplest solitary wave

solution obtained with scalar fields is the (1, 1) dimensional kink. The embedding of a

kinklike defect in three spatial dimensions gives rise to a domain wall, a topological defect

separating a region of space in two volume domains. The initial physical conditions origi-

nating domain walls often favor the emergence of multiple domains separated by dynamical

wall networks. Deviations from standard domain wall models, allowing walls with different

energy or topology or biased vacuum values modify considerably the network structure,

originating different wall patterns [3]. A first-order phase transition in the early universe

could generate bubbles of the broken-symmetry phase. The study of collapsing domain

bubble [4] contributed for the discovery of breather solutions. In the regime of high bubble

nucleation rate, one can consider the collision of two bubbles as in flat spacetime with

SO(2, 1) symmetry [5]. For very large bubbles, the collision process can include in addition

planar symmetry, an ingredient also used in the context of branes [6]. In a Minkowski

background, this reduces the background dynamics of colliding domain walls to that of a

KK̄ pair in (1, 1) dimensions, as used for instance in the study of the effects of small initial

quantum fluctuations in nucleated bubbles in collision [7].

Kink and antikink solutions can be obtained for instance in the renormalizable and non-

integrable φ4 theory. Despite its simplicity, in this theory and in several other nonintegrable

models the process of KK̄ collisions can be surprisingly rich, when analyzed as a function of

the initial velocity of approximation [8–19]. For large initial velocity the pair KK̄ recedes

from each other whereas for small initial velocity a KK̄ bion state [20] is formed. For

intermediate velocities, however, the richness of the collision is revealed with windows in

velocity (called bounce windows) where an integer number of bounces do appear before the

components of the KK̄ pair recede from each other. If one zooms in the border of a region

of a certain number of bounces, a new window shows up with a higher number of bounces

in a kind of fractal structure [16]. The present work deals with the simplest effect of two-

bounce windows. Two-bounce windows were also observed in collisions between kinks and
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defects [21–24] and in collisions of orthogonally polarized vector solitons in birefringent

optical fibers [25–27]. For a good review for effects of nonlinearity in classical field theory

for nonintegrable systems, see [28] and references therein.

According to Campbell, Schönfeld and Wingate (CSW) [13], a resonance effect is the

mechanism behind the appearance of two-bounce windows. There the separation of the

formed pair KK̄ after the second bouncing is due to the change from the first vibrational

mode and consequent restoration to the translational mode in a resonant mechanism. A

counter-example of this mechanism was found for the φ6 model and presented in ref. [29],

where it was shown that two-bounce windows could be obtained even in the absence of a

vibrational mode, but as a result of collective mode produced by the pair KK̄. For more

results with this model, see ref. [30].

In this paper we present another counter-example of the CSW mechanism, in which

two-bounce windows disappear completely despite the presence of vibrational modes. For

this, in section 2 we consider a class of deformed kinks [31] driven by a parameter b that

recover the φ4 kink (for b = 0) and in the limit b→∞ leads to a 2-kink [32]. The model has

always a zero mode and at least one vibrational mode. The number of vibrational modes

depends on b. In section 3 we consider the structure of KK̄ scattering. The analysis

shows the gradual disappearing of the two-bounce windows until their total suppression

for a specific range of b values. In section 4 we present our main conclusions, including the

connection between our finding, the appearance of an additional vibrational mode and the

structure of the potential of linear perturbations.

2 The model

We start with the action

S =

∫
dxdt

(
1

2
∂µφ∂

µφ− V (φ)

)
, (2.1)

where the φ is a real scalar field and V (φ) is the potential. The equation of motion is

φtt − φxx + Vφ = 0, where Vφ ≡ dV /dφ. The construction of static kinks φS with the

first-order formalism requires the introduction of a superpotential W (φ). If the potential

has the form V (φ) = 1/2W 2
φ , then the solutions of the first-order equation dφ/dx = ±Wφ

are also solutions of the second order equation of motion. The defects formed with this

prescription minimize energy and are known as BPS defects [33, 34]. The φ4 model is the

archetype of the construction of kink defects in non-integrable theories. It is characterized

by a superpotential given by Wφ = 1 − φ2, with a solution given by φ(x) = ± tanh(x −
x0), where x0 is the center of the kink. Stability analysis is a standard procedure and

considers small fluctuations φ(x, t) = φS + η(x)eiωt. This results in a Schrödinger-like

equation −ηxx + Vsch(x)η = ω2η with Vsch(x) = Vφφ(φS(x)). With the introduction of the

superpotential, it can be shown that the Hamiltonian is positive definite and tachyonic

modes are absent.

An interesting class of deformed kinks was considered in ref. [31], where the properties

of the defects where controlled by a parameter. The defect has the following scalar field
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Figure 1. Field configurations φ(x). The figures are for fixed b = 0 (red solid), b = 1.05 (brown

dash), b = 1.5 (black dash-dotted), b = 5.0 (blue dotted) and b = 1000 (green long-dashed).

profile

φ(x) =
sinh (x)

cosh (x) + b
, (2.2)

where an antikink solution may be obtained by the space reflection to get φK̄ = −φK . The

dimensionless parameter b regulates the appearance of a double kink character. Figure 1

depicts some plots of φ(x) for several values of b. Note the deformation of the solution

with the increasing of b, achieving a 2-kink aspect for b = 1000.

Such solution can be obtained by the superpotential [31]

Wφ = −
(
b2 − 1

)
φ2 + 1− b

√
(b2 − 1)φ2 + 1

(b2 − 1)
. (2.3)

The figure 2 depicts the change in shape of the potential V (φ) corresponding to the several

solutions shown in figure 1. Note that b = 0 recovers the φ4 potential with two minima at

φ = ±1 and a local maximum at φ = 0. We are interested in the region b > 1. In particular

for b = 1000 the potential has three minima, a necessary condition for a 2-kink solution.

Figure 3 presents some plots of Vsch(x) for the same parameters and conventions of

figure 1. Note from the figure that for all values of b ≥ 0 there is a possibility of occurrence

of bound states. This potential for b = 0 has two eigenvalues, corresponding to the trans-

lational (ω = 0) and vibrational (ω =
√

3) modes. From the structure of the potential we

note that these bound states must be centered at x = 0, corresponding to the minimum of

Vsch. This behavior of Vsch is maintained for b = 1.01, where a lower minimum at x = 0

is accompanied by an increasing of the potential with |x| which asymptotes to a lower

maximum in comparison to the case b = 0. From b = 1.01 until b = 1.4 the amplitude of

the local minimum at x = 0 is reduced. For b & 1.4 the point x = 0 turns to be a local
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Figure 2. Potential V (φ). The figures are for fixed b = 0 (red solid), b = 1.05 (brown dash),

b = 1.5 (black dash-dotted), b = 5.0 (blue dotted) and b = 1000 (green long-dashed).

Figure 3. Schrödinger-like potential Vsch(x). The figures are for fixed b = 0 (red solid), b = 1.05

(brown dash), b = 1.5 (black dash-dotted), b = 5.0 (blue dotted) and b = 1000 (green long-dashed).

maximum, with the appearance of two local minima in the potential. In this region, the

larger is b, the larger is the local maximum at x = 0, tending for b� 1 to the formation of

two trapping regions separated by a large potential barrier. This is a necessary condition

for the formation of a 2-kink.

We have solved the Schrödinger-like equation for several values of b > 1, and the results

are depicted in figure 4. For 1 < b ≤ 1.1 we have only one vibrational mode, as occurs to
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Figure 4. Squared frequencies ω2 from the vibrational states as a function of the parameter b.

the φ4 model. The increasing of b leads to the reduction of the first eigenvalue, tending to

zero for large b. In this model we have an additional characteristic: the presence of two

(for 1.2 . b . 4.1) and three (for b & 4.2) vibrational modes with the increasing of b. We

noted also that the energy of the third vibrational mode decreases continuously with b.

The energy of the second vibrational mode initially decreases with b, achieves an inflection

point and grows slowly for larger values of b. Larger values of b shows the coalescence of

the second and third vibrational modes, whereas the first mode tends to zero, reproducing

effectively a model with just one vibrational mode for very large values of b (as seen for

b > 100 in the figure).

3 KK̄ collisions

We considered the collisions to be symmetric, with a deformed kink coming from x→ −∞
with velocity v and a deformed antikink coming from x → +∞ with velocity −v. The

initial conditions are

φ(x, 0) = φK(x+ x0, v, 0)− φK(x− x0,−v, 0)− 1

φ̇(x, 0) = φ̇K(x+ x0, v, 0)− φ̇K(x− x0,−v, 0), (3.1)

where φK(x+x0, v, t) means a boost solution for the deformed kink. We used a pseudospec-

tral method on a grid with 2048 nodes and periodic boundary conditions. We fixed x0 = 12

as the initial kink position, and we set the grid boundaries at xmax = 250. For fixed value

of b, we have the following possibilities: i) inelastic scattering (1-bounce) between the pair

KK̄ for v > vc, defining the critical velocity vc; ii) bion states for v < vc, which are states

where the pair KK̄ remains trapped and irradiates continuously until being annihilated;

iii) bounce windows, for v . vc. Figure 5 shows the plot of vc versus b. The plot shows
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Figure 5. Critical velocity vc versus b.

that for b > 1 the critical velocity decreases continuously with b until achieving an absolute

minimum around b = 1.4. For b > 1.4 there is an increasing of vc passing to a maximum,

followed by a broad decreasing of vc for larger values of b. In particular, for b = 1000 we

have vc = 0.222. In this way the behavior of vc(b) for b > 1.4 is similar to the double

sine-Gordon kink [14].

The CSW mechanism is described by the relation [13]

ω1T = 2πm+ δ. (3.2)

Here T is the time between bounces, ω1 is the frequency of the vibrational mode and δ is a

phase shift. The label m characterizes the order of the two-bounce window, and is related

to the number M of oscillations of φ(x = 0, t) between the two-bounces as m = M − 2.

Figures 6a–6d show some results of the number of bounces versus initial velocity for

fixed values of b. Figure 6a is for b = 1.01, a case with just one vibrational mode, whereas

figures 6b–6d corresponds to examples with two vibrational modes. The two-bounce win-

dows observed in figure 6a can be explained by the CSW mechanism. With the increasing

of b, some of the two-bounce windows previewed are suppressed. We will show that one

example of this corresponds to figure 6b for b = 1.3. With larger values of b a region of

total suppression of two-bounce windows is achieved (see figure 6c for b = 1.6). For even

larger values of b, some two-bounce windows are recovered (see figure 6d).

Tables 1 and 2 contains data of the first four observed two-bounce windows for b = 1.01

and b = 1.3, respectively (corresponding to figures 6a–6b). Each window is characterized

by a center v̄ and a thickness ∆v. From table 1 we see that for b = 1.01 the thickness of the

two-bounce windows decrease with m, and that this agree with what observed in figure 6b.

Moreover for this value of b we confirm the existence of a scaling relation ∆v ∝M−β [16],

with β ∼ 2.89 ± 0.05. Now, table 2 shows that for b = 1.3, two-bounce windows still

appear (as already noted in figure 6b), but their structure is affected by the presence of the

extra vibrational state. Indeed, we verified that for b = 1.2 the first two-bounce window

is absent whereas table 2 shows that for b = 1.3 the same occurs with the first three ones.
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Figure 6. Number of bounces versus initial velocity v for a) b = 1.01, b) b = 1.3, c) b = 1.6,

d) b = 1.7.

m v̄ ∆v β v̄pred

1 0.1916 0.0111 — 0.1966

2 0.2208 0.004 2.84 0.2203

3 0.2329 0.0025 2.92 0.2318

4 0.2393 0.0015 2.89 0.2383

Table 1. The center (v̄), width (∆v), scaling (β) and predicted center (v̄pred) in the initial impact

velocity for the first four observed windows in the two-bounces observed in collisions for b = 1.01.

m v̄ ∆v β v̄pred

4 0.0716 0.0007 — 0.0796

5 0.0799 0.0004 3.63 0.0843

6 0.0848 0.0005 1.17 0.0875

7 0.0880 0.0004 2.23 0.0897

Table 2. The center (v̄), width (∆v), scaling (β) and predicted center (v̄pred) in the initial impact

velocity for the first four observed windows in the two-bounces observed in collisions for b = 1.3.

This shows that the suppression of the two-bounce starts in the lower value of m, labeled

mmin, and that mmin grows with b. This is confirmed by figure 7. The figure shows that

this region of suppression grows with b and for b ∼ 1.35 we observed total suppression of

two-bounce windows. The suppression is maintained for 1.35 . b . 1.6.
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Figure 7. Plot of the label mmin of the first observed two-bounce windows versus b, showing the

gradual disappearing of the two-bounce windows until a total suppression around b = 1.35.

For b > 1.6 and not too large, the two-bounce windows are partially recovered, but

with the structure characterizing the two-bounce windows particularly distorted. This is

illustrated in figures 8a–8b. Note in figure 8a that φ(x = 0, t) oscillates six times around the

vacuum φ = 1, showing that this pattern corresponds to a two-bounce window labeled by

m = 4. This collision belongs to the first two-bounce window on the left visible in figure 6b,

and some of its characteristics where described in the first line of table 2. On the other

hand, figure 8b shows an irregular pattern of oscillation, and it is difficult to assign without

ambiguity a value m for this. This collision belongs to the second window on the left from

figure 6d. We also found that the scaling relation is affected with the appearance of an

extra vibrational state. Indeed for b = 1.2 we have β ∼ 3.1 ± 0.3 (showing an increasing

in the uncertainty of β when compared with the previous case) whereas table 2 shows that

for b = 1.3 an agreement between the obtained values of β is hardly possible, showing that

there is no such scaling relation anymore.

For very large values of b, two-bounce windows with regular structure are recovered. In-

deed, in this regime the scalar field has a 2-kink profile, with the corresponding Schrödinger-

like equation with only one vibrational state, and the CSW mechanism is applicable.

In the region before suppression, we investigated some properties of the structure of

the two-bounce windows, confirming the validity of eq. (3.2) and the scaling relation [13]

T ∝ (v2
c − v2)−1/2. We also used CSW theory to understand the measured center of two-

bounce windows and to estimate values of lacked centers. Indeed, for each value of b, it is

possible to predict the centers as given by [13]

v2 = v2
c −

r2(
2π
ω1
m+ δ

ω1

)2 . (3.3)

Tables 1 to 2 show that the centers obtained numerically agree with those predicted by

this method.
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Figure 8. Plots of φ(x = 0, t) versus t, showing a behavior characteristic a) of the fourth two-

bounce window (m = 4) for initial velocity v = 0.0713 and b = 1.3 (corresponding to a point from

the first visible window in figure 6b); (b) of a two-bounce window, but with irregular oscillations,

for v = 0.172 and b = 1.7 (corresponding to a point from the second visible window in figure 6d).

4 Conclusions

Our analysis showed that the presence of at least one additional vibrational state concurs

to spoil some of the resonant effect (according to the CSW mechanism) responsible for the

formation of two-bounce windows. The effect of partial suppression of two-bounce windows

was already previewed in the final considerations of ref. [13] and observed for instance in

the double sine-Gordon [14] and in φ4 kink-impurity interactions [21]. In the latter case

a qualitative explanation of the effect could be made using collective coordinates [9, 35–

37]. Here, however, the quite intricate Schrödinger-like potential makes it impracticable

to obtain explicit expressions for the vibrational eigenmodes, necessary for the application

of the collective coordinates method. Nevertheless, a comparison between the qualitative

results of both systems shows that indeed the extra vibrational states are those responsible

for the suppression of the two-bounce windows in the present case. A remarkable property

of this model, the effect of total suppression of two-bounce windows, was observed in a

continuous range of b (for 1.35 . b . 1.6) strictly connected to the beginning of changing

of shape in the Schrödinger potential. Indeed, for b ∼ 1.4 the potential changes from a

minimum at φ = 0 to a local maximum at this point (for better contrast, see figure 3

for b = 1.5). Then this range of parameters marks the transition from the point where

the potential favors the formation of a single kink to that where the potential starts to

favor the appearance of two separated kinks. The increasing of b to even larger values

(in the direction of the formation of a two-kink) leads to a revival in the number of the

two-bounce windows. This makes sense with some known results, since total suppression of

two-bounce windows was not observed in other models of 2-kinks [38, 39]. This signals that
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in the model analyzed here the total suppression of two-bounce windows in KK̄ collisions

requires beside the existence of more than one vibrational state a hybrid character between

a kink and a double kink. Finally we stress that in a sense this work is a counterpart of

what presented in ref. [29], which showed the formation of two-bounce windows in the φ6

model even in the absence of an internal vibrational state. That is, this work also poses

some limits on the applicability of the CSW mechanism to describe KK̄ collisions.
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