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We have considered the localization of resonant bosonic states described by a scalar field Φ trapped in
tube-like topological defects. The tubes are formed by radial symmetric defects in (2,1) dimensions,
constructed with two scalar fields φ and χ , and embedded in the (3,1)-dimensional Minkowski
spacetime. The general coupling between the topological defect and the scalar field Φ is given by the
potential ηF (φ,χ)Φ2. After a convenient decomposition of the field Φ , we find that the amplitudes of
the radial modes satisfy Schrödinger-like equations whose eigenvalues are the masses of the bosonic
resonances. Specifically, we have analyzed two simple couplings: the first one is F (φ,χ) = χ2 for a
fourth-order potential and, the second one is a sixth-order interaction characterized by F (φ,χ) = (φχ)2.
In both cases the Schrödinger-like equations are numerically solved with appropriated boundary
conditions. Several resonance peaks for both models are obtained and the numerical analysis showed
that the fourth-order potential generates more resonances than the sixth-order one.

© 2014 The Authors. Published by Elsevier B.V. Open access under CC BY license. Funded by SCOAP .3
1. Introduction

Topological defects are full of interesting realizations in physics.
As examples one can cite applications in the study of quark con-
finement [1], gravitation and cosmology [2] and condensed matter
physics [3]. The idea that we live in a multidimensional brane
world [4] has been applied to the issue of topological defects, with
interesting insights to the problem of cosmological constant and
hierarchy [5–9]. The inclusion of scalar fields is connected to the
concept of dynamically generated thick branes [10–20] with inter-
esting results concerning to their structure, collision properties and
localization of fields [21].

In this work we study a class of topological defects embed-
ded in a flat spacetime. Despite the absence of gravity, the defects
are in a way similar to (5,1) branes, in the sense of being the
result of an embedding of a topological defect in two extra di-
mensions. Specifically we consider (2,1)-dimensional topological
defects with two coupled real scalar fields, constructed within a
simplified model describing a color dielectric medium. We follow
and extend the procedure presented in Refs. [22,23] for the case of
two real scalar fields. We show that the embedding of the radial
defect in (3,1)-dimensions form a tube-like topological defect and
study its structure. In the present work, we show that the con-
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struction with two scalar fields is crucial for studying processes
of field localization of spin-0 particles with particular interest for
resonance effects.

There are several examples of two-dimensional topological de-
fects with radial symmetry. For instance, vortices are (2,1) dimen-
sional soliton solutions in U (1) gauge theory with complex scalars
and the Higgs mechanism [24]. Recently, interesting extensions for
non-Abelian fields have been constructed [25]. Ring-type objects
are a subject of great interest (see, for instance, the review [34]).
An important example of solutions of this type in curved space-
time are black rings, which are solutions of general relativity with
extra dimensions (see, for instance, [26]). Another interesting ex-
ample of ring solitons in gauge field theory are the anomalous soli-
tons, where the gauge field is constrained after fixing its Chern–
Simons number by including fermions into the system [27,28]. Also
in non-Abelian gauge field theory we can have smooth, finite en-
ergy loops stabilized by the magnetic energy, forming non-Abelian
rings. Considering the non-Abelian Yang–Mills–Higgs theory for
the group SU(2), ring solitons were obtained in [29] which are
more general solutions than the magnetic monopoles [30]. Other
constructions give sphaleron rings [31]. A sphaleron is a static
unstable solution of the classical equations of motion; it is a sad-
dle point configuration separating topologically distinct vacua [32].
Despite their possible instability, the sphaleron rings can perhaps
have an importance as mediators of baryon number violating pro-
cesses [33,34].
 Funded by SCOAP .3

http://dx.doi.org/10.1016/j.physletb.2014.01.015
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
http://dx.doi.org/10.1016/j.physletb.2014.01.015
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physletb.2014.01.015&domain=pdf
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


R. Casana et al. / Physics Letters B 730 (2014) 8–13 9
In this work we are interested in the Abelian version of the
color dielectric model [35,36] with two real scalar fields without
fermions. The topological defect formed is neither a ring nor a vor-
tex (in the sense that there is no winding number). A first physical
motivation is to show that a dielectric model with two coupled
real scalar fields can be responsible for an effective breaking of
translational invariance, leading to a topological defect capable of
trapping scalar particles with simple couplings. In this way, this
work can be inserted in a series of previous studies of trapping
of spin-0 fields for specific topological defects. In the context of
braneworlds there are several examples of such analysis. In (5,1)

dimensions (one extra dimension) see, for instance, the works in
[37]. The construction of brane models with one extra dimension
can be done starting from the solution in (1,1) dimensions with
the help of the first-order formalism [10]. The first-order formal-
ism is very helpful for achieving explicit analytical solutions for
brane models. As far as we know, brane models with two ex-
tra dimensions have no similar formalism developed yet, which
turns explicit solutions much more difficult to obtain. In this way
another motivation for this work can be inserted in the search-
ing for such first-order formalism. Indeed, here we consider a
(3,1)-dimensional system where the two extra dimensions are de-
scribed by the usual (y, z) coordinates, but where the application
of a first-order formalism was done only in a flat Minkowski space-
time, neglecting gravity effects.

The manuscript is presented in the following way: In Section 2
we consider (2,1)-dimensional radial topological defects embed-
ded in a (3,1)-dimensional flat spacetime. In Section 3, we study
some aspects of localization of scalar fields in this system, and
numerically investigate resonance effects in Section 4. Our conclu-
sions are presented in Section 5.

2. A tube in (3,1)-dimensions

We start with an Abelian version of the color dielectric model
[35,36] without fermions. We can express this by the following
action

S =
∫

dt dx dy dz

[
1

2
∂Mφ∂Mφ + 1

2
∂Mχ∂Mχ (1)

− g(φ,χ)

4
F MN F MN − e AM J M

]
, (2)

where g(φ,χ) is the electric permittivity. We use capital letters M ,
N for all (3,1) dimensions (coordinates (t, x, y, z)) and Greek let-
ters μ,ν for (1,1) dimensions (coordinates (t, x)). We particularize
to J M = 1

r (δ(r),0,0,0), with r = √
y2 + z2, representing the charge

density. The factor 1/r comes from expressing the delta function
δ(�r) in cylindrical coordinates.

The equations of motion for static and radial scalar fields are

∇2φ = −1

2
gφ E2, (3)

∇2χ = −1

2
gχ E2, (4)

where in this Letter we use the simplified notation fφ = ∂ f /∂φ,
fφχ = ∂2 f /(∂φ∂χ) and similar constructions for other deriva-
tives of a differentiable function f . The Maxwell equations,
∂M(g F MN ) = e J N lead to the following expression for the elec-
tric field

E = e

rg
. (5)

We consider a medium with electric permittivity given by (similar
relation for one field was found in [22])
g(φ,χ) = e2

2V (φ,χ)
, (6)

where

V (φ,χ) = 1

2

(
W 2

φ + W 2
χ

)
(7)

is a potential that generates a two-field topological defect in (1,1)

dimensions and W (φ,χ) is the superpotential. This means that we
are considering a dielectric model where the electric permittivity is
infinity at the vacua of the potential V (φ,χ). In (1,1) dimensions
the vacua of the potential are located at ±∞. However, we are
constructing a model in (3,1) dimensions with radial symmetry.
We will see then that one of the vacua occurs in r = 0, meaning
a divergent dielectric permittivity along the center of the tube. We
can also say that the charge density given by J M polarizes the
vacuum, leading to a nontrivial topology.

With Eqs. (6), (3) and (4), the equations of motion for the scalar
fields are

1

r

d

dr

(
r

dφ

dr

)
= − e2

2r2

gφ

g2

= 1

r2
(Wφ Wφφ + Wχ Wχφ), (8)

1

r

d

dr

(
r

dχ

dr

)
= − e2

2r2

gχ

g2

= 1

r2
(Wφ Wφχ + Wχ Wχχ ). (9)

Following a similar procedure established in [22] for one-field
defects, for a given superpotential W it can be shown that the
solutions of the first-order equations,

dφ

dr
= 1

r
Wφ,

dχ

dr
= 1

r
Wχ , (10)

are also solutions of the second-order equations (8) and (9).
Therefore, the tube in (3,1)-dimension is effectively described

by the action

Stube =
∫

dtd3x

(
1

2
∂Mφ∂Mφ + 1

2
∂Mχ∂Mχ − U (φ,χ)

)
, (11)

with

U (φ,χ) = 1

2r2

(
W 2

φ + W 2
χ

)
, (12)

leading to the same equations of motion for the fields φ(r) and
χ(r) given by Eqs. (8) and (9).

The explicit dependence of r = √
y2 + z2 follows closely and

generalizes for two fields the construction of [22,23] for evading
Derrick–Hobarts’ theorem [38–40]. The explicit breaking of transla-
tional invariance in the action is present in some scenarios of QCD
[41–45], brane intersections [46,47], noncommutative field theory
[48,49] and condensed matter physics [50,51].

In this work we consider the following superpotential [52]

W (φ,χ) = λ

(
φ − 1

3
φ3 − sφχ2

)
, (13)

corresponding to the potential

U (φ,χ) = λ2

r2

(
1

2

(
1 − φ2 − sχ2)2 + 2s2φ2χ2

)
, (14)

which generates kink-like and lump-like solutions given, respec-
tively, by (more general solutions for this model where found in
Ref. [53])
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Fig. 1. The functions φ(r) (kink-like) and χ(r) (lump-like). We fix r0 = 1. We have
a) λ = 30 (left) and b) λ = 50 (right). In all figures s = 0.06 (blue), s = 0.1 (black),
s = 0.2 (red). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

φ(r) = ( r
r0

)4λs − 1

( r
r0

)4λs + 1
,

χ(r) = ±2

√
1

s
− 2

( r
r0

)2λs

( r
r0

)4λs + 1
. (15)

With the condition 0 < s < 1/2, the solutions provide a radial
profile with r0 identified with the radius of the tube’s cross sec-
tion. The profiles for the φ,χ fields are shown in Fig. 1. There it is
shown that for increasing λ the defect becomes narrower. Also it
is verified that for small values of s, the effects of the field χ are
more predominant than those of φ and we have a wider defect.
On the other hand, larger values of s show that the χ field is re-
sponsible for the process of generating a thicker tube. In particular,
the limit s = 1/2 recovers the one-field φ limit and a result from
the literature (the solution for p = 1 in the notation of Ref. [22]) is
recovered.

In (1,1) dimensions the potential given by (W 2
φ + W 2

χ )/2 has

minima at (±1,0) and (0,±√
1/s ) with s > 0; static solutions

from the equations of motion connect the minima (±1,0) and
form Bloch walls [52], which are defects with an internal struc-
ture given by the χ field. The limit s → 0.5 turns the two-field
problem into a one-field model with solution known as Ising wall.
In the present work the presence of the field χ also contributes
to generate an internal structure to the tube formed. Later in this
work we will see that this is crucial for localizing scalar fields with
both fourth- and sixth-order potentials.

The energy density of the 2-dimensional radial defect is

T00 = 8

(
λs

r0

)2 ( r
r0

)4λs−2

( r
r0

)4λs + 1

×
{

4

(
r

r0

)4λs

+
(

1

s
− 2

)[(
r

r0

)4λs

− 1

]2}
. (16)

Here we consider T00 finite in r = 0, which restricts the parameters
to satisfy λs � 1

2 when λ > 1.
For fixed λ > 1 and 1

2λ
� s < 1

2 , T00(r) changes from a lump
centered in r = 0 (s = 1

2λ
) to a peak centered around r0 (s = 1

2 ).
For larger values of λ and lower values of s, the contribution of the
χ field is higher and the defect appears as a thick tube structure
whose center is localized between the origin and r0. On the other
hand, for larger values of λ and larger values of s, the defect looks
like as a thin tube centered around r0, and the field φ has the
stronger contribution to the energy density.

The total energy in the yz-plane is given by E = 8πλ/3, which
can be identified with the mass of the (2,1) radial topological de-
fect, that is, the total mass (per unit length of the x-direction) of
the tube.

3. Spin-0 localization

We consider a scalar field Φ in a region where exists a ra-
dial defect constructed with the scalar fields φ,χ . In the present
analysis we neglect the backreaction on the defect by considering
that the interaction between the scalar fields is sufficiently weak in
comparison to the self-interaction that generates the defect. In the
following, we designate Φ as the weak field, and φ,χ the strong
ones. We write the action describing the system as

S1 =
∫

dt dx dy dz

(
1

2
∂MΦ∂MΦ − η

2
F (φ,χ)Φ2

)
. (17)

The equation of motion of the scalar field is

∂μ∂μΦ − ∇2
T Φ + ηF (φ,χ)Φ = 0

where

∂μ∂μ =� = ∂2

∂t2
− ∂2

∂x2
, ∇2

T = ∂2

∂ y2
+ ∂2

∂z2
.

We consider a coupling F (φ,χ) = F (r) and require ηF (r) → 0 for
0 ∼ r 	 r0 and for r 
 r0. It is possible to decompose the field
Φ(t, x, y, z) as

Φ(t, x, y, z) =
∑
�,n

ϕ�n(t, x)ρ�n(r)ei�θ , (18)

where � = 0,1,2, . . . is related to the angular momentum eigen-
value. The set {ei�θ } is orthogonal in θ ∈ [0,2π ]. The field ϕ�n(t, x)
satisfies the two-dimensional Klein–Gordon equation

(
�+ m2

�n

)
ϕ�n = 0 (19)

and the amplitude ρn�(r) satisfies the radial Schrödinger-like equa-
tion

−ρ ′′
n� − 1

r
ρ ′

n� + V (r)ρn�(r) = m2
�nρn�(r), (20)

for fixed �, where the Schrödinger potential is given by

V = �2

r2
+ ηF . (21)

By requiring that Eq. (20) defines a self-adjoint differential op-
erator in r ∈ [0,+∞), the Sturm–Liouville theory establishes the
orthonormality condition for the components ρn�(r),

∞∫
0

dr rρn�(r)ρm�(r) = δmn. (22)

The action given by Eq. (17) can be integrated in the (y, z) di-
mensions, leading to

S1 =
∫

dt dx
∑
�n

(
1

2
∂μϕ�n∂

μϕ�n − 1

2
m2

�nϕ�n

)
. (23)

This shows that the field ϕ�n is a massive two-dimensional Klein–
Gordon field with mass m�n .
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Fig. 2. Schrödinger-like potentials V 1 (left) and V 2 (right) for � = 2. We fix r0 = 1,
and η = 30. We have a) λ = 30 (upper figures) and b) λ = 50 (lower figures). In
all figures s = 0.06 (blue), s = 0.1 (black), s = 0.2 (red). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

4. Numerical results

In this work we consider two simple couplings: i) F1(φ,χ)=χ2

which results in a fourth-order potential χ2Φ2, and ii) F2(φ,χ) =
(φχ)2 resulting in a sixth-order potential (φχ)2Φ2. From Eq. (21),
the corresponding Schrödinger potentials are

V 1 = �2

r2
+ 4η

(
1

s
− 2

)
( r

r0
)4λs

[( r
r0

)4λs + 1]2
, (24)

V 2 = �2

r2
+ 4η

(
1

s
− 2

)
( r

r0
)4λs[( r

r0
)4λs − 1]2

[( r
r0

)4λs + 1]4
. (25)

In order to investigate numerically the massive states, firstly we
consider the region near the origin (r 	 r0). For λs � 1/2, the cou-
pling functions F1 and F2 go to zero as r4λs then potentials are
dominated by the contributions of the angular momentum propor-
tional to 1/r2,

V (r) ≈ �2

r2
, (26)

and the nonsingular solutions in r = 0 are

ρ
(0)
n� (r) = J�(mnr), �� 0. (27)

Hence, for each value of �, Eq. (27) is used as an input for the
Runge–Kutta–Fehlberg method that produces a fifth order accurate
solution.

We now define the probability for finding scalar modes with
mass m�n and angular moment � inside the tube of radius r0 as
Fig. 3. P�n as a function of m for couplings F1 = χ2 (left) and F2 = (φχ)2 (right).
We fix � = 2, η = 30 and r0 = 1. We have a) λ = 30 (upper figures) and b) λ = 50
(lower figures). In all figures s = 0.06 (blue), s = 0.1 (black), s = 0.2 (red). (For in-
terpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

P�n =
∫ r0

rmin
dr r[ρ�n(r)]2

∫ rmax
rmin

dr r[ρ�n(r)]2
. (28)

Here rmin 	 r0 is used as the initial condition and rmax is the char-
acteristic box length used for the normalization procedure, being a
value where the Schrödinger potentials are close to zero and where
the massive modes oscillate as plane waves.

From the energy density considerations of Section 2, larger val-
ues of λ favor the existence of a Schrödinger potential with struc-
ture similar a tube barrier in r = r0. Fig. 2 depicts the Schrödinger-
like potentials V 1(r) and V 2(r) for � = 2, λ = 30, 50, and fixed
η = 30 and r0 = 1. The potentials in general diverge in r → 0, as-
sume a form of a barrier around r = r0 (with a local maximum at
r = r0 for V 1 and a local minimum for V 2) and asymptote to zero
as r → ∞, indicating the possible presence of resonances. The in-
creasing of η turns the barrier of the potential higher, whereas the
increasing of λ turns it thinner. We noted that � influences on the
behavior of the potential for r < r0 but has no sensible influence
on the barrier. We also observed that the increasing of r0 turns
wider the potential barrier.

We remember that the field χ is responsible for the internal
structure of the defect, present for smaller values of the parame-
ter s. This is closely connected to the increasing of the height of
the barrier in the Schrodinger potentials, suggesting that lower val-
ues of s are more effective for trapping scalar particles. Figs. 3a–b
show some results of P�n as a function of m for couplings F1 = χ2

(left) and F2 = (φχ)2 (right). The plots are for � = 2, r0 = 1,
η = 30 and for various values of s and λ. We used rmin = 10−8,
rmax = 4 and step in r equal to �r = 0.002. The plots show several
peaks of resonances, followed by a plateau for larger masses where
P�n = r0/rmax. The thinner is a peak, the larger is the lifetime of
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the corresponding resonance. Comparing 3a (for λ = 30) with 3b
(for λ = 50), we note that, for λ 
 1 larger values of λ corresponds
to slightly less massive resonances, with lower lifetimes. This can
be related to the thinner barrier of the Schrodinger potential for
larger values of λ. Also from Figs. 3a–b, we note that lower val-
ues of s corresponds to thinner peaks of resonance, agreeing with
what expected from analysis of the energy density and Schrodinger
potential. The effect of the field φ in a direct coupling with Φ is
to reduce the effectiveness of the trapping mechanism. This is ev-
ident comparing left and right sides from Figs. 3a–b. We note that
the resonances with coupling F1 = χ2 are better defined, in larger
number and with larger masses in comparison with those present
when the coupling F2 = (φχ)2. We also verified that the peak po-
sitions do not depend on the choice of rmax.

5. Remarks and conclusions

The present manuscript was firstly motivated by searching a
first order formalism in a braneworld scenario with two extra di-
mensions. We present it in a (3,1)-dimensional system where the
(y, z)-coordinates describe extra dimensions, in absence of gravita-
tional effects. The second purpose was to analyze the localization
of scalar particles living in a (1 + 1)-dimensional world (described
by (t, x)-coordinates) interacting with a topological defect living
in the extra dimensions. In order to show explicitly such imple-
mentation, we have considered an Abelian version of the color
dielectric model described by two coupled real scalar fields which
have generated a tube-like topological defect capable of trapping
scalar particles.

Specifically, we have studied the localization of (1 + 1)-dimen-
sional scalar fields in a generalized tube-like topological de-
fect whose cross-section is a radial defect constructed with two
scalar fields. The analysis was performed by considering a gen-
eral coupling between the defect and the scalar field, and care-
fully constructed to provide quantum mechanical description of
the amplitudes related to the scalar field modes. For the cou-
plings F (φ,χ) = (φχ)2 and F (φ,χ) = χ2, the numerical analysis
of the Hamiltonian spectra showed that the field χ , related to the
presence of an internal structure on the defect, is also the main
responsible for the mechanism of trapping scalar particles around
the tube. Further we must point out that a first-order formalism
for two extra dimensions was applied for a problem with axial
symmetry in (3,1) dimensions, with interesting analytical simpli-
fications which turned the analysis much easier than a full numer-
ical solution. The present analysis can be considered as a startup
in the construction of a first-order formalism for braneworlds with
two extra dimensions. In this direction, the study of weak grav-
ity field is currently being considered and results will be reported
elsewhere.
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