
Supplementary Materials 

Figure S1. 1H-NMR (500 MHz, CDCl3) spectrum of the new compound 1. 
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Figure S2. 13C-NMR (126 MHz, CDCl3) spectrum of the new compound 1. 
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Figure S3. 1H-NMR (500 MHz, CDCl3) spectrum of the new compound 2. 
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Figure S4. Amplified 1H-NMR (500 MHz, CDCl3) spectrum of the new compound 2. 
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Figure S5. 13C-NMR (126 MHz, CDCl3) spectrum of the new compound 2. 
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Figure S6. 1H-NMR (500 MHz, DMSO- d6) spectrum of the new compound 3. 
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Figure S7. 13C-NMR (126 MHz, DMSO-d6) spectrum of the new compound 3. 
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Computational Details 

Calculations have been carried out using PC GAMESS package at the B3LYP/STO-3G** level and 
wxMacMolPlt software for structure visualization [1–6]. Optimization algorithm was based on the 
Quadratic Approximation (QA) and the threshold gradient value was 10−5 a.u. [7]. Vibrational analysis 
showed all real frequencies asserting the stationary points as minima [7]. The NBO donor-acceptor pairs 
were checked and steric energies were calculated [8–12]. 

Figure S8. Conformations found in the Cambridge Structural Database. 
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Table S1. Relative Energies (kcal.mol−1)—Conformation. 

7-membered ring 
Conformer ∆Go (298.15 K) ∆EZPE ∆E 

71 0.0 0.0 0.0 
72 0.0 0.2 0.7 
73 0.4 1.2 2.0 
74 −0.6 1.1 2.4 

9-membered ring 
Conformer ∆Go (298.15 K) ∆EZPE ∆E 

91 0.0 0.0 0.0 
92 4.3 4.0 3.7 
93 14.4 15.3 15.9 
94 22.6 22.3 22.0 

Figure S9. Optimized structures for the 7-membered ring compound. 
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Figure S9. Cont. 

 

 

Figure S10. Optimized structures for the 9-membered ring compound. 
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Figure S10. Cont. 
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