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ABSTRACT 

Ca2Fe2O5 powder sample, were prepared to investigate the origin of the weak ferromagnetic component reported in 
literature for calcium ferrite single crystals. In this work, the calcination method was used to produce nanocrystalline 
powders of Ca2Fe2O5. XRD measurement has shown the presence of Fe3O4 magnetite and CaO as impurity phases. The 
ferrimagnetic phase deeply influences the magnetic behavior with features very similar to those reported in literature 
for Ca2Fe2O5, both powders and single crystals. Our results support the hypothesis that the weak ferromagnetic com-
ponent observed in Ca2Fe2O5 can be also due to the presence of magnetite impurity traces in the samples. The powders 
were submitted to calcination processes at 500˚C for 2 hours and 950˚C for 16 hours. The sintered sample was submit-
ted at 1050˚C for 6 hours and characterized by X-Ray Powder diffraction (XRD), dielectric measurements, Magnetiza-
tion and Scanning Electron Microscopy (SEM) analysis. 
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1. Introduction 

CF (Ca2Fe2O5) is a member of the family of com- pounds 
with general formula A2B2O5 (A = Ca, Sr; B = Fe, Al), 
and it finds application in the field of catalysis, when 
obtained from mechano-chemical synthesis [1]. Its struc- 
ture is the one known for the Srebrodolskite mineral [2,3] 
and it is related to the perovskite (ABO3) structure by the 
introduction of an ordered array of oxygen vacancies and 
the creation of an alternate layer structure of octahedrally 
and tetrahedrally coordinated transition metal cations. 
The iron end-member CF [4,5] (mineral name srebro-
dolskite) adopts space group Pnma at ambient conditions 
(a = 5.4, b = 14.8, c = 5.6 Ǻ). Their magnetic structures 
and properties have been investigated by many authors 
[6-12]. Physical properties of CF, such as electronic and 
oxygen-ionic transport [13] and catalytic [14] and photo 
catalytic [15] behavior, have been studied. Usage as 
catalyst for the combustion of volatile organic com-
pounds [16,17] and for direct decomposition of NOx in 
exhaust streams [18,19] has been examined. Numerous 
entries in patent data bases also highlight a strong inter- 
esting brownmillerites for catalytic applications. Brown- 
millerite type structures exhibit two different layers, al-  

ternately stacked: 1) perovskite-like sheets of octahe-
drally co-ordinated B cations and 2) layers of BO4 tetra-
hedra, which are corner-linked to form parallel zweier 
single chains. Mixed occupations are observed frequently. 
Two phase transitions are known for the iron end-mem- 
ber CF: the loss of the antiferromagnetic order at the 
Neel temperature at 720K [7-9,20] and a structural phase 
transition [12,20-22] at 950K. The high-temperature 
phases of the end-members Ca2Fe2O5 and Ca2Al2O5 
turned out to be isotypic modulated structures [6,23], 
with an aperiodic sequence of tetrahedral chains. These 
structures are described using the (3+1)-dimensional su-
per space approach [24]. Their super space group is 
Imma(00γ)s00. The main purpose of the work is to pre-
pare CF ceramic and study the effect of the analyses of 
the magnetic momentum versus magnetic field (H) and 
dielectric comportment. X-Ray diffraction and Scanning 
Electron Microscopy (SEM) analysis were also done to 
characterize such ceramic. 

2. Experimental 

CF crystalline powders were prepared by stoichiomet- 
ric quantities of CaCO3 (Aldrich 99%) and Fe2O3 (Al- 
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drich 98%) were the mixtures were submitted to heat- 
treatment at 500˚C during 2 h and 950˚C during 16 h 
both with a heating rate of 3˚C/min. Equation (1) repre- 
sents the expected chemical reaction: 

3 2 3 2 2 32CaCO Fe O Ca Fe O 2CO       (1) 

X-Ray Diffraction 
The X-ray diffraction (XRD) patterns data were ob- 

tained at room temperature using powder samples in an 
X’Pert MPD Philips difractometer (with Kα radiation, λ = 
1.54056 Å) at 40 KV and 30 mA. Intensity data were 
collected by the step counting method (step 0.02˚ and a 
time per step of 1s) between 20˚ and 60˚ (2θ). The analy-
sis of the crystallite size (Lc) of the Ca2Fe2O5 phase has 
been done using the Scherrer’s equation [A]: 

cosc

k
L


 

               (2) 

where k is the shape coefficient (k = 1 was chosen, con-
sidering that the shape of this point is spherical), λ the 
wave length, β the full width at half maximum (FWHM) 
of the peak of each phase and θ the diffract- tion angle. 
For this purpose, we chose the avarege of peak within the 
pattern and according to Pnma space group of Ca2Fe2O5. 
This peak corresponded to hkl = 141, both along the c 
crystallographic axis.  

VSM 
The magnetization (M/H) was measured using an Ox-

ford Instruments VSM (Vibrating Sample Magne- tome-
ter) between 1.6 and 300 K, on a field-cooled sample, 
under an applied field of 100 Oe. 

SEM 
The morphological analysis of the sample structure 

was performed using the scanning electron microscopy 
(SEM), Philips XL-30, operating with bunches of pri-
mary electrons ranging from 12 to 20 keV. 

3. Results and Discussions 

Figure 1 present XRD pattern of the CF calcinated at 
950˚C. Brownmillerite or srebrodolskite (Ca2Fe2O5) [25] 
was identified. This structure (Ca2Fe2O5) can be seen like 
a perovskite deficient in oxygen, where as brownmillerite 
(A2B2O5) is a kind of oxygen-deficient perovskite struc-
ture that is composed of perovskite-like three-dimen- 
sional framework of corner-sharing BO6 octahedra alter-
nating with slabs containing rows of corner-sharing BO4 
tetrahedra which are formed by the deficiency of oxygen 
during the formation of the structure [26]. The little im- 
purity peaks () and () indicate the formation of 
Fe3O4 [25] and CaO [25] phases respectively were de- 
tected in the XRD of the sample (Figure 1). In addition, 
investigations of magnetic resonance are of special in-
terest, since Ca2Fe2O5 is a many-sublattice system with 

 

Figure 1. XRD pattern of the sample. Ca2Fe2O5 (), Fe3O4 
() and CaO () [25]. 
 
a nontrivial magnetic layer structure [27]. The Figure 2 
exhibits the variation of M  with frequency for CF at 
different temperatures. A well-defined relaxation mecha- 
nism is observed in the temperature range of 303 - 353 K. 
The relaxation peaks shift towards higher fre- quencies 
with increasing on temperature. For sample, a single 
peak is observed. The presence of such relaxation peaks 
in the M   plots indicates that the samples are ionic 
conductors [28]. The nature of the variation of dc (10 
KHz) vs. 1000/T and fmax (peak maximum, Figure 2) vs. 
1000/T with temperature follows the Arrhenius relation 3 
and 4 respectively:  

exp a
o

E
f f

kT
  


               (3) 

exp a
o

E

kT
    


               (4) 

where f0 and 0 is a pre-exponential factor, Ea is the 
activation energy; k is the Boltzmann constant; and T 
the absolute temperature [29].  
  The activation energy calculated from the modulus 
spectrum (0.20 eV) is also comparable to the value  
 

 

Figure 2. The temperature dependence of the of the Imagi-
nary Modulus of the CF sample, from 303 to 353 K. 
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obtained from the conductivity (0.18 eV) (Figure 3). The 
comparable values of the activation energy of both con-
ductivity and modulus spectra indicate that the relaxation 
and conductivity process may be attributed to the same 
type of charge carries [30]. Figure 4 shows the magneti-
zation as a function of temperature. There is a decrease 
of the magnetization with the increase in temperature 
characteristic of the brownmillerite. The Ca2Fe2O5 struc-
ture is a weak antiferromagnet directed along the c-axis 
[27]. This observation shows that the magnetocrystalline 
anisotropy in the a-c plane is small. The influence of 
Fe3O4 on the magnetic behavior not is observed. The 
micrographics (Figure 5(a) and (b)) showed particles of 
the sample CF, where the micro-structures demonstrate 
average grain size of 0.61 μm, while the crystallites for 
that sample obtained by the diffraction of x-ray range 
from 70.92 ± 3.38 nm indicating the presence of large 
agglomerates of particles due to the sintering process. 
The reason for this morphology depends to the sintering  

 

 

Figure 3. dc (10 KHz) vs. 1000/T () and fmax (peak 
maximum in Imaginary Modulos of CF) vs. 1000/T (). 

 

 

Figure 4. Temperature Dependence of the Magnetization 
for the CF sample, from 1.6 to 300 K. 

 

 
(a) 

 

 
(b) 

Figure 5. SEM of the CF sample with 20.000X ((a) and (b)). 
 

effect, where, probably, the formation of Fe3O4 phase 
changes the grain size in sample. 

4. Conclusions 

Ca2Fe2O5 (brownmillerite) phase was obtained with the 
presence of impurity phases (Fe3O4 and CaO) probably 
due heat-treated at 950˚C. The comparable values of the 
activation energy of both conductivity and modulus 
spectra indicate that the relaxation and conductivity 
process may be attributed to the same type of charge car-
ries. The VSM analysis show that the Ca2Fe2O5 structure 
is a weak antiferromagnet directed along the c-axis. Be-
tween 75 and 150 K we have a decrease of the magneti-
zation with the temperature characteristic of the brown-
millerite [27]. This observation shows that the magneto-
crystalline anisotropy in the a-c plane is small. The crys-
tallites for that sample obtained by the diffraction of 
x-ray (70.92 ± 3.38 nm) indicating the presence of large 
agglomerates of particles due to the sintering process 
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where the formation of Fe3O4 phase changes the grain 
size in sample. 
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