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Abstract

Background: Female breast cancer is the major cause of death by cancer in western
countries. Efforts in Computer Vision have been made in order to improve the
diagnostic accuracy by radiologists. Some methods of lesion diagnosis in
mammogram images were developed based in the technique of principal
component analysis which has been used in efficient coding of signals and 2D
Gabor wavelets used for computer vision applications and modeling biological
vision.

Methods: In this work, we present a methodology that uses efficient coding along
with linear discriminant analysis to distinguish between mass and non-mass from
5090 region of interest from mammograms.

Results: The results show that the best rates of success reached with Gabor wavelets
and principal component analysis were 85.28% and 87.28%, respectively. In
comparison, the model of efficient coding presented here reached up to 90.07%.

Conclusions: Altogether, the results presented demonstrate that independent
component analysis performed successfully the efficient coding in order to
discriminate mass from non-mass tissues. In addition, we have observed that LDA
with ICA bases showed high predictive performance for some datasets and thus
provide significant support for a more detailed clinical investigation.

Introduction
Breast cancer is the major cause of death by cancer in the female population [1]. Early

detection of breast cancer by mammography may lead to a greater range of treatment

options, including less-aggressive surgery and adjuvant therapy [2]. Therefore, a great

effort has been made to improve those techniques. Among them, the most used is the

mammogram, which is simple, low cost and non-invasive. The sensitivity of mammogra-

phy ranges from 46% to 88% and depends on factors such as size and location of the

lesion, breast tissue density, quality of technical resources and the radiologist’s ability of

interpretation. The specificity varies between 82% and 99% and it also dependent on the

quality of the examination [3]. The low sensitivity means that there is a considerable

number of positive cases undetected, preventing early diagnosis and effective treatment.

To decrease the high index of mammogram error, during the last decade the scienti-

fic community has come to use image processing and computer-aided diagnosis (CAD)

techniques to produce digital mammographies. CAD systems can aid radiologists by

providing a second opinion and may be used in the first stage of examination. For this
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to occur, it is important to develop techniques to detect and recognize suspicious

lesions and also to analyze and discriminate them. Regarding this there are some mam-

mogram images mass classification methods in the literature. A mass might be either a

benign or malignant tumor, whereas non-masses are exclusively normal tissues. Zhang

et al [4] have proposed a neural-genetic algorithm for feature selection in conjunction

with neural network based classifier. This methodology reached 87.2% of correct classi-

fication for mass cases with different feature subsets.

Wei [5] investigated the feasibility of using multiresolution texture analysis for differ-

entiation of masses from normal breast tissue on mammograms and use texture features

based on the wavelet coefficients and variable distances. They reached 89% and 86% of

accuracy for the training and test groups, respectively. Jr et al [6] applied semivariogram

function to the characterization of breast tissue as malignant or benign in mammo-

graphic images with sensitivity in 92.8%, specificity of 83.3% and accuracy above 88.0%.

Land et al [7] explored the use of different Support Vector Machines (SVM) kernels and

combinations of kernels, to ascertain the diagnostic accuracy of a screen film mammo-

gram data set and improved about 4% the average of sensitivity and 18% the average of

specificity, reaching 100% of sensitivity and 98% of specificity. Campos et al [8,9] used

independent component analysis (ICA) and neural network multilayer perceptron to

classify mammograms in 3 classes: normal, benign and malignant, obtaining a rate of

97.3% success. Braz et al [10] classified the regions of interest of screening mammogram

in mass and non-mass using spatial statistics, and reached accuracy up to 98.36%.

The purpose of this work is to classify a specific region of interest (ROI) as mass or

non-mass and compare different methods of efficient coding. This concept has success-

fully explained the properties of receptive fields in primary visual cortex by deriving

efficient codes from the statistics of natural images [11-14]. Today this process can be

modeled with ICA, which works with statistics of high order [15].

We organize this work as follows: in section II, we describe the used database, the

feature extraction process with efficient coding and the classifier linear discriminant

analysis. In section III we show the results obtained using the proposed methodology.

Finally, section IV presents some discussions and conclusions.

Materials and methods
For a better explanation of methodology, we divide the method in three steps as

described in Figure 1. The first is the image acquisition, which is made by obtaining

mammograms and selecting regions that correspond to mass and non-mass. After this,

a histogram equalization in each region extracted is performed to emphasize character-

istics not shown in previous images.

Next we used feature extraction techniques, principal components analysis (PCA),

Gabor wavelet, and the efficient coding model based in independent component analy-

sis (ICA). In the last step, we used linear discriminant analysis (LDA) to classify these

tissues as mass or non-mass. Let us describe in details each step.

Image Acquisition

For the development and evaluation of the proposed methodology, we used a publicly

available database of digitized screen- film mammograms: the Digital Database for

Screening Mammography DDSM [16].
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The DDSM database contains 2620 cases with two default views (medio-lateral obli-

que and cranio caudal) of both breasts, acquired from Massachusetts General Hospital,

Wake Forest University School of Medicine, Sacred Heart Hospital and Washington

University in St. Louis School of Medicine. The data comprise patients of different eth-

nic and racial backgrounds. The DDSM contains descriptions of mammographic lesions

in terms of the American College of Radiology breast imaging lexicon called the Breast

Imaging Reporting and Data System (BI-RADS). Mammograms in the DDSM database

were digitized by different scanners depending on the institutional source of the data

and have resolutions between 42 and 50 microns. A subset of DDSM cases was selected

for this study. Cases with mass lesions were chosen by selecting reports that only

included the BI-RADS descriptors for mass margin and mass shape [17].

Through the coordinates provided by the database, a ROI was selected for each image

containing the tissue. In some mammogramms we found more than one mass; in these

cases, we extracted more than one ROI. For the normal mammograms were selected

ROIs of different sizes and texture randomly. Only the pectoral muscle was not consid-

ered as a possible ROI, although tissue and fatty tissue were. All non-mass regions were

extracted from cases that did not have a mass region. After that, we applied a histogram

equalization, and resized all ROIs to 32 × 32 pixels. For clarity of notation, we represent

images as vectors created by concatenating rows of pixels called x.

We selected 5090 regions of interest out of 2620 cases, 3240 of which had a mass

and 1850 were normal controls. For a better validation of the samples we used the

technique of 10-fold cross validation, i.e., data were randomly divided into 10 subsets,

each subset had 324 mass samples and 185 non-mass samples. Then we used 509 sam-

ples for testing and 4581 for training. From a set of ten groups created, we selected a

group for the test and nine for training, repeating the process until we had used all

groups as testing set, always using all other groups for training.

Principal Components Analysis

Principal components analysis (PCA) [18,19] has long been used in efficient coding

of various biological signals, like speech [20], ECG [21] and EEG [22]. PCA is a

Figure 1 Methodology. Proposed Methodology based in three steps: Image acquisition, feature extraction
and classification.
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well-known optimal linear scheme for dimension reduction in data analysis. The cen-

tral idea of PCA is to reduce the dimensionality of a data set while retaining as much

as possible the variance of the data set.

Thus in many applications PCA is used as a pre-processing of data, serving as input

for other numerical models. The advantage in this case is to reduce the number of

parameters of the model immediately following the PCA, improving performance and

saving processing time.

To obtain this new representation of data in a smaller size, we must perform the follow-

ing steps: Subtract the average of the data and calculate the covariance matrix as equation 1∑
= E

[
(x − μ) (x − μ)T

]
(1)

where x is the data and μ is the mean of the data. The notation ∑ for the covariance

matrix is widely used and seems natural because ∑ is the uppercase version of s. It
should not be confused with the same symbol used for summation of a series. Then

we calculate the eigenvalues and eigenvectors of the matrix ∑ and sort the eigenvectors

in descending order according to the eigenvalues. We chose the first eigenvectors

because they have higher variance to form the feature vector. Next we derived the new

data set using the following formula

Z = X · V (2)

where V is the matrix with eigenvectors. An assumption made for feature extraction

and dimensionality reduction by PCA is that most information of the observation vec-

tors is contained in the subspace spanned by the first m principal axes, where m <p

for a p-dimensional data space. Therefore, each original data vector can be represented

by its principal component vector with dimensionality m.

Specifically in this work we entered the training set in PCA algorithm and we got as

output parameters the principal components, show in Figure 2. Then our training and

tests images were projected in these principal components, as in equation 3.

Ẑtrain = XT
train · V

Ẑtest = XT
test · V

(3)

Where in each column of XT is a training image of 1024 × 1 pixels and V is a ortho-

gonal matriz 1024 × k, which columns represents a principal components and k is the

number of the selected principal components.

Efficient Coding

Feature extraction that uses statistics has been heavily influenced by neural information

processing models [23]. Neuroscience studies suggested that neuron populations pro-

cess stimuli information according to the concept of efficient coding [24]. Under this

concept, neuron responses are mutually statistically independent which means that

there is no redundant information processed throughout the population. The computa-

tional aim of efficient coding is to estimate from the statistics of pattern ensemble a

compact code that tries to reduce the redundancy in the patterns with minimal loss of

information. The data is transformed by a set of linear filters W which acts to X, and

generates s. In matrix form

s = Wx (4)
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Figure 2 PCA basis. The 50 first principal components of ROIs sorted by variance.

Figure 3 ICA basis. The 50 filters generated by the model of efficient coding.
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or equivalently in terms of a basis matrix, x = W-1s = As, where s is an estimation of

independent components. Methods for deriving efficient code in the model of the

equation 4 falls under the rubric of either sparse coding or independent component

analysis (ICA) [25].

Independent Component Analysis

Let us assume that an image x is composed by a set of filters or basis images A = [a1,

..., an] which are independently activated by coefficients s = [s1, ..., sn]
T , such as

x =
n∑
i=1

aisi (5)

In 5, only the variables x are known, and from them we estimate the coefficients a

and the mutually independent components s.

To estimate several independent components, we used the FastICA algorithm [26],

using several units. By a “unit” we refer to a computational unit, eventually an artificial

neuron, having a weight vector wi that the neuron is able to update by a learning rule.

The FastICA learning rule finds a direction, i.e. a unit vector wi such that the projec-

tion wi
T x maximizes nongaussianity. Nongaussianity is here measured by the approxi-

mation of negentropy J (wT x) given by 6.

J
(
y
) ∝ [

E
{
G

(
y
)} − E {G (v)}]2. (6)

The variance of wi
T x must be here constrained to unity; for whitened data this is

equivalent to constraining the norm of wi to be unity [27].

The FastICA was then performed in training set and we obtained 1024 basis func-

tions. To select the most relevant of this basis function we use a similar technique to

pursuit, described in the paper by Sousa et. al. [28]. This process consisted of the fol-

lowing steps:

Step 1: Define an empty subspace Ψ;

Step 2: Repeat next step for k = 1, 2, ..., n, where n is the dimension of Ψ;

Step 3: Using Eq. 12, classify image XT
train projecting into the subspace composed of

[Ψ; Ak], where Ak is the kth base function of A;

Step 4: Select the base functions according to the better result from classification on

the training set;

Step 5: Move Ak from A to Ψ so that n = n - 1;

Step 6: Return to step 2 until Ψ get the desired dimension;

The 50 most relevant basis function are show in Figure 3.

Then, what we do in the ICA will not be different from what we do in PCA. The set

of training and test images are projected in these selected functions basis, as we can

see in equation 7.

X̂train = XT
train · �

X̂test = XT
test · �

(7)

Gabor Wavelet

The Gabor filters are band-pass filters with tuneable orientation and radial frequency

bandwidths. The Fourier transform of the Gabor filters are Gaussian shifted in
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frequency. The Gabor representation is proved to be optimal in the sense of minimiz-

ing the joint 2-D uncertainty in space and frequency. The Gabor filter kernels have

similar shapes as the receptive fields of simple cells in the primary visual cortex when

stimulate by naturals image [11]. They are multi-scale and multiorientation kernels.

These filters can be represented as the equation 8

A 2-D Gabor function is described as follows:

g
(
x, y

)
=

1
2πσxσy

exp

[
−1
2

(
x2

σ 2
x
+

y2

σ 2
y

)
+ 2π jωx

]
(8)

A bank of Gabor filters can be obtained by scale and rotation of g(x, y).

gmn
(
x, y

)
= a−mg

(
x′, y′

)
,

x′ = a−m (
x cos θ + y sin θ

)
,

y′ = a−m (−x sin θ + y cos θ
)
,

(9)

where θ = nπ /k and k is the total number of orientations, m = 1, ..., M, M is the

number of scales. With Gabor, we create 100 filters, ten diferents scales and orienta-

tions. With the same algorithm used above we perform the selection of Gabor wavelets

of which have greater significance in the classification of ROIs. The 50 most significant

may be seen in the Figure 4. Then, we projected the set of training and test in these

selected gabor filters, as we can see in equation 10.

Ŷtrain = XT
train · G

Ŷtest = XT
test · G

(10)

Figure 4 Gabor basis. The 50 Gabor wavelet filters chosen by selection algorithm.
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Linear Discriminant Analysis

Linear discrimination, as the name suggests, looks for linear combinations of the input

variables that can provide an adequate separation for a given class. Rather than looking

for a particular parametric form of distribution, LDA uses an empirical approach to

define linear decision plans in the attribute space i.e. it models a surface. The discrimi-

nant functions used by LDA are built up as a linear combination of the variables that

seek to maximize the differences between the classes [29]:

y = β1x1 + β2x2 + · · · + βnxn = BTx (11)

The problem then is reduce to find a suitable vector b. There are several popular

variations of this idea, one of the most successful being the Fisher Linear Discriminant

Rule.

Fisher’s Rule is considered a “sensible” classification, in the sense that it is intuitively

appealing. It makes use of the fact that distributions that have a greater variance

between their classes than within each class should be easier to separate. Therefore, it

searches for a linear function in the attribute space that maximizes the ratio of the

between-group sum-of-squares B to the within-group sum-of-squares WLDA. This can

be achieved by maximizing the ratio

βTBβ

βTWLDAβ
(12)

and it turns out that the vector that maximizes this ratio,b, is the eigenvector corre-

sponding to the largest eigenvalue of WLDAB i.e. the linear discriminant function y is

equivalent to the first canonical variate. Hence the discriminant rule can be written as:

x ∈ i if
∣∣βTx − βTui

∣∣ <
∣∣βTx − βTuj

∣∣ , for all j �= i (13)

where WLDA =
∑
i
ni

∑
i and B =

∑
ni(xi − x)(xi − x)T, and ni is class i sample size, ∑i

is class i covariance matrix, xi is the class i mean sample value and x is the population

mean. We use this technique to classify the news test sets (X̂test, Ẑtest and Ŷtest). Then

for each test set was used corresponding training set, ie, was used to X̂test with X̂train,

Ẑtest with Ẑtrain and was used Ŷtest with Ŷtrain. Each training and testing group is com-

posed of masses (benign and malignant) and non-masses samples.

We chose the LDA for simplicity of implementation and low computational con-

sumption compared to other classifiers such as support vector machine (SVM). We

can see in previous works [30] that the SVM has a rate of accuracy greater than the

LDA, but the time taken to determine the best parameters in training is higher than

the LDA.

Validation of the Classification Methods

In order to evaluate the classifier with respect to its differentiation ability, we have ana-

lyzed its sensitivity, specificity and accuracy. Sensitivity indicates how good the test is

to identify the disease and is defined by TP /(TP + FN), specificity indicates how good

the test is to identify patients without pathologies and is defined by TN/(TN + FP ),

and accuracy is defined by (TP + TN)/(TP + TN + FP + FN), where TP is true-positive,

TN is true-negative, FN is false-negative, and FP is false-positive. True-positive means

mass samples correctly classified as mass. The meaning of the other ones is analogous.
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To determine accuracy, sensitivity and specificity, we used the average of results

obtained by 10-fold cross validation.

Results
The best result with PCA obtained an accuracy of up to 87.28% with 39 principal com-

ponents and with Gabor we got an accuracy of up to 85.28% with 41 components.

With the ICA, we obtained an average success rate of 90.07% with 41 independent

components. Figure 5 shows different results for different quantities of components,

for all techniques described here. However, we could analyze and compare various

accuracy results between the different techniques, and observed that the ICA reaches

better results than the PCA from the very first component, and that the results with

the PCA get better as the number of components increases until the moment of con-

vergence, around the 5th component. Gabor has a different increasing rate for the

PCA and the ICA: it starts with a decay in its accuracy until 25 filters and then the

success rate increases until it reaches its peak at 41 components and remains stable

thereafter. Regarding the sensitivity and specificity, Figure 6 and 7 respectively, we

found that using the technique of ICA we obtained better results than using PCA and

Gabor (93.83% sensitivity with 24 basis functions and 85.48% specificity with 41 basis).

With this result we observe that the system ranks true positive cases better than true

negative cases, ensuring good reliability for clinical cases.

Another study that was conducted is related to the diagnoses of nodules as benign or

malignant. We used the same filter banks to obtain the classification of mass and non-

mass, and the same techniques for the classification of these nodules. We used 1540

Figure 5 Accuracy. Results with different numbers of components and the difference between the
accuracy of PCA, ICA and Gabor.
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Figure 6 Sensitivity. Results with different numbers of components and the difference between the
sensitivity of PCA, ICA and Gabor.

Figure 7 Specificity. Results with different numbers of components and the difference between the
specificity of PCA,ICA and Gabor.
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benign mass images and 1700 malign mass images. The results we obtained showed an

average accuracy of 84.22% with three components using ICA filters. The sensitivity

was 82.97% with three components and specificity was 86.09% with 9 components.

PCA resulted in an average accuracy of 81.45%, 79.85% of sensitivity and 83.95% of

specificity, all with nine components. Gabor resulted in a success rate of 77.00% and

76.06% of sensitivity both with 13 components and 78.06% of specificity with 22 com-

ponents. These results can be observed in Figures 8, 9 and 10.

Discussion and Conclusions
This paper has presented a computer aided diagnosis system based on feature extrac-

tion and inspired by the concept of efficient coding, applied to the problem of recog-

nizing breast cancer in ROIs, classifying as mass or non-mass, and in the case of mass

further classify as benign or malignant. To perform the classifications we used the Lin-

ear Discriminant Analysis.

The improvement using efficient coding is by a few percentage points in sucess rate.

Although relatively small, the improvemente is likely to be very valuable, because the

occurrence of false negatives (low sensitivity) can lead to human death.

LDA succeeded partially in separating the two classes, but there is still a margin of

intersection between them, an area that characterizes the misclassification. In [30] we

can see that the hyperplane generated by the Support Vector Machine (SVM) separates

these classes better thus providing a better result in the classification. However, the

computational cost of the LDA is lower than the SVM, saving time in the operation.

Figure 8 Accuracy - Benign or Malign. Results of classification as benign or malign with different
numbers of components and the difference between the accuracy of PCA, ICA and Gabor.
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Figure 9 Sensitivity - Benign or Malign. Results of classification as benign or malign with different
numbers of components and the difference between the sensitivity of PCA, ICA and Gabor.

Figure 10 Specificity - Benign or Malign. Results of classification as benign or malign with different
numbers of components and the difference between the specificity of PCA, ICA and Gabor.
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Furthermore this assumption of linearity leads to a limitation of our system, which

does not allow us to consider nonlinear structures in feature extraction and classifica-

tion. In future work we will use nonlinear methods of feature extraction, such as Ker-

nel PCA [31], nonlinear Hidden Markov Models [32] and other statistical models

[33,34] in order to achieve a possible improvement in success rates.

An interesting factor in these results is the fact that the best accuracy is not ways

achieved using all the components. We suspect that this happens when we use too

much information to classify, creating redundancies and confusing the classifier, conse-

quently decreasing the rate of success. We believe the ideal number of components is

between 30 and 50, because tests conducted with more components did not achieve

the best results, although still got results around average.

Altogether, the results presented demonstrate that independent component analysis

performed successfully the efficient coding in order to discriminate mass from non-

mass tissues. In addition, we have observed that LDA with ICA bases showed high pre-

dictive performance for some datasets and thus provide significant support for a more

detailed clinical investigation.
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